Recent studies have demonstrated the potential of lean production methods for improving the effectiveness of construction processes. This study investigates the effect of lean production principles on construction projects that manifest different degrees of structural complexity. The importance of specific lean principles (specify value, rethink your operating methods, focus on actual objects, release resources for delivery just when needed and strive for perfection) is evaluated using discrete event simulation for three different structural steel projects. The projects' configurations range from simple to complex and include a small commercial building, a mid-rise office building and a hospital expansion. Results of simulation analysis indicate that the more complex projects exhibit increased "lean" process improvement when compared to the simpler projects. Our results also indicate that traditional production planning methods are more effective on simpler projects. In addition, domain uncertainty and project complexity are highly coupled as regards the improvements that are realized by applying lean principles. In short, project characteristics play a significant role on the impact of lean production theory when it is applied to construction processes. It is possible that hybrid construction process design approaches, such as a push-pull system, will behave better than a pure pull system. There is a need for a better understanding of how to apply lean principles to maximize improvement to construction systems.
Lean principles, process simulation, project characteristics, complexity, volatility, buffer size
Al-Sudairi, A. A. , Diekmann, J. E. & Songer, A. D. 2000. Interplay of Project Complexity and Lean Production Methods, 8th Annual Conference of the International Group for Lean Construction , -. doi.org/ a >
Download: BibTeX | RIS Format