
580

Proceedings IGLC-15, July 2007, Michigan, USA

THE INVESTIGATION OF LEAD-TIME
BUFFERING UNDER UNCERTAINTY USING
SIMULATION AND COST OPTIMIZATION

Chachrist Srisuwanrat1 and Photios G. Ioannou2

ABSTRACT
The impact of uncertainty and variability in the productivity of trades aggravates the
problem of work interruptions and idle time within repetitive activities. To eliminate the
interruptions and idle time in order to achieve smooth work flow of resources, activities
are deliberately delayed from their early start date. However, this practice induces a
problem of tradeoffs between project cost and duration. Many recent studies have
suggested that different types of buffers can be used to absorb the impact of uncertainty
and variability on production work flow and most studies focus on using buffer to
determine “when to halt an on-going production line”. In contrast, this paper focuses on
“when to start a production line so that there is no interruption”. Two different
approaches to lead-time buffering, the sequence step algorithm (SQS-AL) and the
completed unit algorithm (CU-AL), are investigated using STROBOSCOPE (a discrete-
event simulation system) with a special search add-in that implements a genetic-algorithm
(GA). The investigation reveals that applying lead-time buffer provides better work flow
and greater project profit; however, these depend on the penalty cost of work flow
interruption and indirect cost. Both algorithms have implications that translate to
advantages and limitations depending on assumptions, simplicity of simulation model,
project characteristics, and uncertainty.

KEY WORDS
Lead-time buffering, the sequence step algorithm, the completed unit algorithm,
production work flow, continuous resource utilization, idle time, simulation,
STROBOSCOPE, genetic algorithm, profit maximization.

INTRODUCTION
One of the main concerns in scheduling repetitive activities is how to keep resources
working continuously without interruptions or idle time. Interruptions and idle time in
repetitive work are caused by differences in activity production rates and by when
repetitive activities are scheduled to start for the first time.

In general, scheduling repetitive activities effectively requires that the following
characteristics and constraints must be considered:

• Production rates
• Variation in production rates
• Precedence constraints

1 Ph.D. Candidate, Civil and Env. Engineering. Department, 2350 G.G. Brown, University. of Michigan,

Ann Arbor, MI 48109-2125, christ_cv@hotmail.com
2 Professor, Civil and Env. Engineering. Department, 2350 G.G. Brown, University of Michigan, Ann

Arbor, MI 48109-2125, photios@umich.edu

 The Investigation of Lead Time Buffering Under Uncertainty using Simulation
and Cost Optimization

 581

Commercial, Cost Management and IT Support

• Resource availability constraints
• Resource continuity constraints
• Direct and indirect project cost
• Penalty cost and time from interruptions in production lines

Omitting one of these factors would incur waste in time and capital, which can be
seen when repetitive activities are scheduled at their early start dates as in CPM or PERT.
Early-start scheduling ignores resource continuity constraints and causes work flow
interruptions that result in idle time, lower productivity, and, consequently, penalty cost
and time.

To eliminate interruptions and idle time, resource availability and resource continuity
constraints must be taken into account in scheduling production lines. Examples of
scheduling methods considering these constraints are Line-Of-Balance (LOB), Linear
Scheduling Method (LSM), and Repetitive Scheduling Method (RSM). Taking
constraints into their calculation, these methods could employ one or more of the
following techniques to minimize the number of interruptions and idle time:

• Balancing production rates
• Delaying activities to eliminate interruptions and idle time within the activities
• Introducing work breaks

Even so, current repetitive scheduling methods (e.g., LOB, LSM, and RSM) are
effective to a certain extent since they do not explicitly consider uncertainty and
variability in construction tasks. They are deterministic scheduling methods and as such
rely on average production rates or activity durations to schedule repetitive work.
Unfortunately, average production rates alone are not sufficient to capture the behavior of
actual construction (Tommelein et al. 1998). Consequently, when these methods are used
in practice, they still result in work interruptions between repetitive units, and hence, in
resource idle time. Thus, new approaches are needed to solve the problem of scheduling
production lines or repetitive activities in a probabilistic manner.

One of the often-used and facilitating approaches for scheduling repetitive activities
under uncertainty and variability is to use discrete-event simulation in conjunction with
user-specified buffers. Several studies have suggested that different types of buffers can
be used to absorb the impact of uncertainty and variability on production work flow
(Ioannou and Likhitruangsilp 2005, Ioannou and Srisuwanrat 2006, Tommelein et al.
1999, Alarcon and Ashley 1999, Sakamoto et al. 2002, Alves and Tommelein 2004).
Many of these studies focus on using buffers to determine “when to halt an on-going
production line”. In this paper we focus on the underlying problem of using buffers to
control “when to start a production line so that there is no interruption”. We will call this
second type of buffer “a lead-time buffer”.

A lead-time buffer (or lead time) is the time interval, measured from project start, that
specifies when a particular resource should arrive at the site. The purpose of lead-time
buffers is to control the arrival of resources to the jobsite, and hence to control the start of
the associated activities. In this paper we discuss those situations where each repetitive
activity requires a separate resource (no sharing resources between activities), and where
there is no variability in specified crew arrival dates. Hence, the terms lead-time buffer,
crew lead time, crew arrival date, and activity start date are used interchangeably.

Figure 1 illustrates the use of a lead-time buffer to eliminate idle time in a successor
activity (activity B), which is caused by a difference in production rates from its

582 Chachrist Srisuwanrat and Photios G. Ioannou

Proceedings IGLC-15, July 2007, Michigan, USA

predecessor (activity A). As shown in Figure 1.1, activity B has idle time of 20 days
(LagB1,B2 + LagB2,B3). To eliminate this idle time, we can introduce a lead-time buffer of
35 days measured from the project start date, as shown in Figure 1.2. Thus, resource B is
scheduled to arrive at day 35. Detailed information about calculating lead-times and
eliminating idle time in deterministic scheduling problem for repetitive projects appears
in (Harris and Ioannou 1998).

In this paper we use simulation and genetic algorithms to investigate two different

methodologies developed by the authors for determining lead-time buffers for repetitive
activities under uncertainty and variability. The first is the “sequence step algorithm
(SQS-AL)” and the second is the “completed unit algorithm (CU-AL)”.

The main difference between the two algorithms is how they derive the lead-time
buffer for a production line (or a repetitive activity). In brief, SQS-AL derives lead-time
buffers for activities on a particular sequence step from their expected crew idle times that
result from the selected lead-time buffers for activities on previous sequence steps. In CU-
AL lead-time buffers are selected to coincide with the completion of a user-specified
number of predecessors’ completed units. Intuitively, SQS-AL should provide better
results than CU-AL, since lead-time buffers from SQS-AL can be any real number,
whereas lead-time buffers from CU-AL can only be selected from the predecessors’ finish
dates of particular activity units. However, both approaches have implications that
translate to advantages and limitations depending on assumptions, simplicity of
simulation model, project characteristics, and uncertainty.

These algorithms are presented through an example project with 5 activities that
repeat over 10 units, that we have modeled using STROBOSCOPE, a discrete-event
simulation system. The effectiveness of the algorithms is evaluated and compared on the
basis of an objective function that measures project profit and which is sensitive to project
duration and the penalty cost of idle time. To perform the investigation of the simulation
models we have developed ChaStrobeGA, a STROBOSCOPE add-on, that implements an
optimization system using a Genetic Algorithm approach. The results from the example
are shown and discussed at the end.

GENERAL CONSIDERATIONS

In the discussion that follows, it is important to keep in mind that lead-time buffers are
always measured from project start date. Their purpose is to provide continuous

Figure 1.1: Early start date schedule with 20
days of idle time in activity B

Figure 1.2: Using lead-time buffer of 35 days to
eliminate idle time in activity B

 The Investigation of Lead Time Buffering Under Uncertainty using Simulation
and Cost Optimization

 583

Commercial, Cost Management and IT Support

production work flow under uncertainty and variability, and not to halt an on-going
production line. These lead-time buffers absorb the effects of uncertainty and variability
in the predecessors’ production rates which, in turn, reduce waiting times and the number
of interruptions. This is similar to what should happen in construction where a general
contractor should be able to specify to specialty trades and subcontractors ahead of time
the specific date for their arrival to the site so as to maximize their productivity with no
interruption, and also to maximize project profit.

SEQUENCE STEP ALGORITHM (SQS-AL)
The sequence step algorithm (SQS-AL) uses the cumulative frequency of an activity’s
idle time and a user-specified confidence level to determine the activity’s lead-time. The
lead-time buffers introduced to preceding activities decrease the idle time of succeeding
activities. Hence, SQS-AL determines lead-time buffers and activity idle times in
sequence step order. The process of constructing cumulative frequency and determining
lead-time buffers moves from activities in one sequence step to activities in the next
sequence step until the end of the network.

An advantage of SQS-AL is that the lead-time buffers calculated by SQS-AL are
derived directly from resource idle times and can be any real value. Moreover, the process
of progressing from one sequence step to another results in accurate values of true idle
times prior to determining lead-time buffers of activities in that sequence step. A detailed
discussion of SQS-AL can be found in (Ioannou and Srisuwanrat 2006).

COMPLETED UNIT ALGORITHM (CU-AL)
For each precedence link in a network, the completed unit algorithm (CU-AL) minimizes
the idle time in the successor by delaying the successor’s start date until a specified
number of repetitive units have been completed by the predecessor. After executing a
certain number of replications, the activity start dates for each activity from these
replications are averaged and used as the lead-time buffer measured from project start.

The start dates collected from these replications are not early start dates, but rather the
dates when their predecessors complete a certain number of units specified by the user. In
this paper, the number of predecessors’ completed units shall be called “BufferXY”;
where X is the predecessor’s name, and Y is the successor’s name. For example, the
statement “BufferAB equals 5” indicates that activity A is a predecessor of activity B and
that activity B can start only when five units or more of activity A are completed. For
example, after 1000 replications are executed, the start date values of B from these
replications are averaged to derive the lead-time buffer for activity B. Then, another 1000
replications are executed, but this time activity B is scheduled to start at the calculated
average value (lead-time buffer for B) from the first 1000 replications. During these
replications, the idle times for activity B are collected to obtain the actual idle time
corresponding to scheduled start date of B (the averaged value of B’s start date from the
first 1000 replications).

EXAMPLE PROJECT

To investigate the efficiency of the sequence step algorithm and the completed unit
algorithm, an example of 5 repetitive activities with 10 units each are modeled and tested
in STROBOSCOPE (Martinez and Ioannou 1999). Figure 2 is the activity-on-node
network for each repetitive unit for the example. Table 1 shows the amount of work for

584 Chachrist Srisuwanrat and Photios G. Ioannou

Proceedings IGLC-15, July 2007, Michigan, USA

each activity in each of the 10 units, and the mean values of activity productivity. In each
repetitive activity, productivity per day is assumed to follow a normal distribution with
the mean shown in Table 1 and a coefficient of variation of 10%.

Figure 2: Activity-On-Node Networks for Single Unit

Table 1: Activity Daily Productivity and Work Amounts

Unit
1 2 3 4 5 6 7 8 9 10 Activity Mean

SD

Work Amounts
A 10 1.0 300 250 150 200 200 250 200 250 300 150
B 20 2.0 150 100 200 150 150 200 100 150 200 200
C 15 1.5 200 150 50 200 50 100 200 200 150 100
D 15 1.5 150 200 100 150 150 150 150 100 100 150
E 25 2.5 100 150 50 100 200 150 150 50 100 200

SIMULATION
The simulation models for the sequence step algorithm (SQS-AL) and the completed unit
algorithm (CU-AL) are implemented using STROBOSCOPE (Martinez and Ioannou
1999). STROBOSCOPE is a resource-driven discrete-event simulation system that is well
suited for this task because it is activity oriented and has powerful capabilities to collect
data and alter variable inputs during simulation. Nevertheless, the models could also be
developed in other simulation environments. The activity sub-network models suggested
in (Ioannou and Srisuwanrat 2006) are used for both algorithms. More details about the
simulation model network can be found in (Ioannou and Srisuwanrat 2006).

For SQS-AL, each sequence step is simulated 1000 times in order to derive lead-time
buffers for activities in that sequence step. Therefore for this network with 5 sequence
steps, SQS-AL requires a total of 5000 replications to derive the lead-time buffers for all
activities. After the lead-time buffers are obtained, another 1000 replications are executed
to collect idle times for each activity, average project duration, and average project profit.

For CU-AL, the entire network is simulated 1000 times in order to derive lead-time
buffers, and another 1000 replications to collect idle times, average project duration, and
average project profit according to the derived lead-time buffers. There are differences in
the means of deriving lead-time buffers and total number of replications required by SQS-
AL and CU-AL. The differences and implications of using the two different approaches
are discussed later in the results section.

OPTIMIZATION USING GENETIC ALGORITHM
The optimization in this paper is achieved by a STROBOSCOPE add-on called
“ChaStrobeGA”, developed by the authors. ChaStrobeGA employs a genetic algorithm to
optimize an objective function by selecting values for decision variables within user-
specified domains. For SQS-AL the decision variables are the activity confidence levels

A B C D E

 The Investigation of Lead Time Buffering Under Uncertainty using Simulation
and Cost Optimization

 585

Commercial, Cost Management and IT Support

(for B, C, D, and E) ranging from 0 to 0.9 with a step of 0.1 (these are the domain values).
For CU-AL, the decision variables are the number of predecessors’ completed units for
each activity relationship (BufferAB, BufferBC, BufferCD, and BufferDE) ranging from
1 to 10 with an interval of 1. ChaStrobeGA automatically alters the input variables,
creates STROBOSCOPE code for the input variables, runs the STROBOSCOPE model,
collects the results, and performs the genetic algorithm.

For the example presented in this paper, the genetic algorithm parameters are 31
generations, 30 populations for each generation, 0.6 cross over probability, and 0.05
mutation probability. In brief, 930 cases, which could be the same or different cases, are
tested. In each case, ChaStrobeGA creates simulation code based on 1) user-given
alternative parameters, 2) result values of the objective function, and 3) genetic algorithm
(reproduction, cross over, and mutation). For example, ChaStrobeGA creates simulation
code for SQS-AL using confidence levels of 0.2, 0.4, 0.8, and 0.5 for activities B, C, D,
and E, respectively. This step of selecting confidence level for each case is executed 30
times (called 30 populations for the first generation), and then these 30 cases are executed
using STROBOSCOPE to get the project profit (objective function) from each case. After
the 30 cases (populations) in the first generation are executed, ChaStrobeGA creates
another 30 populations (the 2nd generation) by reproducing, crossover, and mutation
processes according to genetic algorithm. Then, these steps are repeated until 31
generations are obtained. As the GA progresses from one generation to another, the
average value of project profits from each generation tends to increase. In the end, 930
cases are sorted by their expected project profits and durations in order to derive the best
solution according to GA.

OBJECTIVE FUNCTION AND COST MODEL
An objective function has been developed to investigate the effectiveness of the sequence
step algorithm (SQS-AL) and the completed unit algorithm (CU-AL). Since maximizing
the profit of construction project is one of the main purposes, the objective function used
here is to maximize the following project profit function:

Project Profit = Contract Price - Direct Cost - Indirect Cost

Our focus is to eliminate the waste stemming from resource idle time, to allow the
relaxation of resource continuity constraints under uncertainty and variability, and to
minimize the cost of delaying the project completion date. Thus, the direct cost is
categorized into two groups: productive direct cost (assumed constant) and unproductive
direct cost (linear function of time). The objective function is shown below.

Project Profit = 70,000 – Unproductive Direct Cost – Indirect Cost
Indirect Cost = 5000 + Project Duration (in days) x $ 50/day
Unproductive Direct Cost = CITB * 100 + CITC * 120 + CITD * 60 +CITE * 90
Where, CIT = Crew Idle Time in days

ChaStrobeGA uses GA to maximize Project Profit by changing the decision variables
(confidence level for SQS-AL; and BufferAct1Act2 for CU-AL). Results from GA are
shown in the next section.

586 Chachrist Srisuwanrat and Photios G. Ioannou

Proceedings IGLC-15, July 2007, Michigan, USA

DISCUSSION OF RESULTS
Tables 2 and 3 show the results for the example project using the sequence step algorithm
(SQS-AL) and the completed unit algorithm (CU-AL), respectively. In each table, the
first ten rows are results from base cases and the last row shows results from the genetic
algorithm (GA). Base cases are usually employed to experiment with the scope and the
possible range of project duration, project profit, and, more generally, the behavior of the
system. Here, base cases (the first 10 rows in each table) use the same alternative
parameters for all activities. For example, confidence levels for all activities are 0.1 for
SQS-AL, and predecessors’ completed units for all activities are 1 for CU-AL. Also, the
effectiveness of base cases for both algorithms shall be evaluated and a comparison shall
be made to evaluate how good base cases are in terms of expected project profit and
project duration relative to the optimal results from GA.

Table 2: SQS-AL Results

Confidence Level
Idle Time

(crew days)
Lead-Time Buffer

(days)
B C D E

Project
Profit

($)

Project
Duration

(days) B C D E Total B C D E
0 0 0 0 6,173 267 125 110 107 148 490 31 39 53 63

0.1 0.1 0.1 0.1 50,389 284 2 0 0 2 4 154 163 177 227
0.2 0.2 0.2 0.2 50,463 286 1 0 0 1 2 155 164 179 230
0.3 0.3 0.3 0.3 50,480 286 1 0 0 1 2 155 164 179 230
0.4 0.4 0.4 0.4 50,493 288 1 0 0 1 2 156 165 180 232
0.5 0.5 0.5 0.5 50,483 288 1 0 0 0 1 156 165 180 233
0.6 0.6 0.6 0.6 50,476 289 0 0 0 0 0 157 166 181 234
0.7 0.7 0.7 0.7 50,416 291 0 0 0 0 0 158 167 182 236
0.8 0.8 0.8 0.8 50,328 293 0 0 0 0 0 158 167 183 238
0.9 0.9 0.9 0.9 50,289 294 0 0 0 0 0 159 168 184 239
0.2 0 0 0.6 50,562 285 1 0 0 0 1 155 163 177 230

(Best base case result) / (GA result) = 50,493 / 50,562 = 99.86%

Table 3: CU-AL Results

Buffer
(Units)

Idle Time
(crew days)

Lead-Time Buffer
(days)

AB BC CD DE

Project
Profit

($)

Project
Duration

(days) B C D E Total B C D E
1 1 1 1 6,051 267 125 111 108 149 493 31 39 52 63
2 2 2 2 19,817 267 99 79 66 93 337 56 70 94 118
3 3 3 3 29,600 267 84 54 36 56 230 72 96 124 155
4 4 4 4 41,146 273 63 25 0 10 98 92 124 166 208
5 5 5 5 45,315 307 43 0 0 1 44 113 153 199 251
6 6 6 6 45,251 360 18 0 0 0 18 138 188 242 305
7 7 7 7 44,478 410 0 0 0 0 0 159 215 282 355
8 8 8 8 41,779 464 0 0 0 0 0 184 248 329 409
9 9 9 9 38,842 523 0 0 0 0 0 214 289 380 468
10 10 10 10 36,664 567 0 0 0 0 0 230 315 414 512
7 1 1 5 50,478 289 0 0 0 1 1 159 167 180 233

(Best base case result) / (GA result) = 45,315 / 50,478 = 89.77%

 The Investigation of Lead Time Buffering Under Uncertainty using Simulation
and Cost Optimization

 587

Commercial, Cost Management and IT Support

The optimal results from GA appear in the last rows of Tables 2 and 3. In contrast to

the base cases, the GA results that yield maximum project profit call for combinations of
different decision values for each activity, i.e., (0.2, 0, 0, 0.6) and (7, 1, 1, 5). It should
also be noted that the GA results shown in each table may not be the best solution for that
methodology, since GA does not provide an exhaustive search among all possibilities.
Nevertheless, the GA results should be very close to the anticipated best solutions.
Moreover, there could be more than one solution that results in project profits with less
than 0.1% difference from the best solution shown in each table. For this project, for
example, there are more than 50 solutions that yield project profits within 0.1% difference
from the project profit given by the GA optimum shown.

The first base cases in Tables 2 and 3 have no lead-time buffers and correspond to
early start solutions. Hence, they give results similar to PERT. The numbers shown under
the Lead-Time Buffer headings are simply average early start dates. Thus, without lead-
time buffers, we have the minimum expected project duration at 267 days, but also the
maximum total idle time of about 490 crew days. The introduction of even small lead-
time buffers (e.g., the second base case) reduces total idle time significantly to 4 crew-
days for SQS-AL and 337 crew-days for CU-AL, while project duration increases by 17
days for SQS-AL and 0 days for CU-AL.

For CU-AL in Table 3, the first three cases have the same (minimum) expected
project duration, but correspond to different buffer sizes which cause different expected
total amounts of idle time. It is interesting that the expected project duration could remain
at minimum, while lead-time buffers increase and idle time is being reduced. This shows
that the relationships between buffer size, total idle time and project duration are neither
necessarily direct nor linear. Thus, it is possible, for example, to introduce lead-time
buffers to reduce idle time while not increasing project duration.

The best SQS-AL results from the 10 base cases in Table 2 correspond to a
confidence level of 0.4 for all activities and yield project profit and project duration of
($50,493, 288 days). These results are very close to those from GA ($50,562, 285 days).
The best CU-AL base case in Table 3 gives ($45,315, 307 days) for a lead-time buffer of
5 units. These results are not as close to those from GA ($50,478, 289 days). This is
indeed true for other examples, as well. The optimum from SQS-AL base cases is very
close to the result from GA, while the optimum from CU-AL base cases is not.

The following questions focus on the effectiveness of the sequence step algorithm
(SQS-AL) and the completed unit algorithm (PUC-AL) in terms of maximum expected
project profit, optimization, and efficacy of simulation modelling.

FOR WHICH ALGORITHM DOES GA WORK BEST?
The best result obtained from SQS-AL and GA is very close to that of CU-AL and GA.
The two algorithms appear almost equally effective in terms of providing the optimal
result if GA is used. In addition to the example shown in this paper, we have tested three
other examples. Results from all four examples indicate that the differences in the optima
obtained from both algorithms when using GA is less than 5%. However, the expected
project duration from SQS-AL is always shorter than that from CU-AL. As explained
below, one reason is the use of integer number of completed units in CU-AL which
provides less resolution than the confidence level used in SQS-AL. In order to improve

588 Chachrist Srisuwanrat and Photios G. Ioannou

Proceedings IGLC-15, July 2007, Michigan, USA

the resulting project duration in CU-AL, it would be necessary to divide the repetitive
units into smaller sub-units to reduce the expected duration of each sub-unit.

FOR WHICH ALGORITHM DO BASE CASES PROVIDE BETTER RESULTS?
The optimum results obtained from SQS-AL base cases and from GA are very close (less
than 1% difference). The optimum results from CU-AL base cases are always less than
those from GA by about 10%. More importantly, the expected project profits from all
SQS-AL base cases are near the optimum and fluctuate much less than those from CU-
AL. Thus, SQS-AL base cases always yield better and more reliable results.

There are two reasons for this. First, SQS-AL derives lead-time buffers directly from
activity idle times. In contrast, CU-AL does not consider the existence or the magnitude
of activity idle times and blindly delays each activity’s start date by the number of
completed units specified by the user. In other words, CU-AL causes unnecessary
postponement because it keeps pushing each activity without taking idle time into account
when determining lead-time buffers. Moreover, there are situations where CU-AL cannot
eliminate idle time nor avoid unnecessary postponement as shown in Figure 3. Figure 3.1
shows that if BufferXY is 2 units, Y will have an idle time of 10 days. Figure 3.2 shows
that if BufferXY is 3 units, then project completion is delayed by 20 days. Figure 3.3
shows the ideal solution that can be achieved by SQS-AL but not by CU-AL.

Second, the expected duration of each unit has a significant impact on the size of lead-
time buffers and the results of CU-AL. For example, if all activity durations in Figure 3
are doubled, the idle time in Figure 3.1 will also double and become 20 days while the
unnecessary postponement in Figure 3.2 will double and become 40 days. This drawback
does not exist in SQS-AL.

The inaccuracies in CU-AL caused by the magnitude of activity durations per unit
should be examined carefully. CU-AL is a very natural modeling approach for resource-
based activity systems, such as Stroboscope. This problem may not exist if the project is
modeled at a high level of detail (e.g., operational level) where expected durations for
each unit are relatively small. However, studies that use an approach similar to CU-AL,
but model the project with relatively large units (e.g., floors or road sections), should
reconsider this particular problem. In particular, when CU-AL is used to obtain base case
solutions, analysts should realize that the derived results may greatly deviate from the
optimal solution, especially with respect to project duration.

Subdividing repetitive units is not without its own cost. As the number of repetitive
units increases, so do the number of base cases for CU-AL. For example, if there are 100

X3

Unnecessary Delay

Figure 3.1: Delaying activity Y
to 2 units of X incurs idle time

in Y by 10 days.

Figure 3.2: Delaying activity Y
to 3 units of X incurs

unnecessary delay by 20 days.

Figure 3.3: Delaying activity Y by
40 days from its early start date

results the best solution.

X2

X1

X3

X2

X1

X3

X2

X1

Y3

Y2

Y1

Remaining Idle Time

Y3

Y2

Y1

Y3

Y2

Y1
0 30 60 90 0 30 60 90 0 30 60 90

Day

Unit

3

2

1

0

Unit

3

2

1

0

Unit

3

2

1

0 Day Day

 The Investigation of Lead Time Buffering Under Uncertainty using Simulation
and Cost Optimization

 589

Commercial, Cost Management and IT Support

units in each activity, 100 base cases are required for CU-AL in order to get the best
result. This is not the case for SQS-AL as the number of base cases does not depend on
the number of repetitive units. Usually, the ten base cases shown in Table 2 are enough.

CONCLUSION
The effectiveness of the sequence step algorithm (SQS-AL) and the completed unit
algorithm (CU-AL) is investigated depending on assumptions, simplicity of simulation
model, project characteristics, and uncertainty. In general, the advantage of SQS-AL is its
ability to derive very effective lead-time buffers that eliminate idle time without
unnecessary delay in project duration. However, SQS-AL requires longer computation
time than does CU-AL. The advantage of CU-AL is its simplicity in simulation modeling
and coding. The disadvantages of CU-AL are mainly two. It depends greatly on the user’s
level of effort to perform sensitivity analysis and find a solution close to the optimum,
and its accuracy is vulnerable to the length of activity duration.

ACKNOWLEDGEMENTS
The authors would like to thank Rita Awwad and Sirarat Sarntivijai, graduate students at
the University of Michigan, for their valuable comments on the content of this paper.

REFERENCES
Alarcon, L.F., and Ashley, D.B. (1999). “Playing Games: Evaluating the Impact of Lean

Production Strategies on Project Cost and Schedule” Proc. 7th Ann. Conf. Intl. Group
for Lean Constr., IGLC-7, 26-28 July held in Berkeley, CA, USA, 263 – 173.

Alves, T.C.L. and Tommelein, I.D. (2004). “Simulation of Buffering and Batching
Practices in the Interface Detailing-Fabrication-Installation of HVAC Ductwork”
Proc. 10th Ann. Conf. Intl. Group for Lean Constr., IGLC-12, August held in
Ellsinore, Denmark, 13 pp.

Harris, R.B., and P. G. Ioannou. (1998). “Scheduling projects with repeating activities”
ASCE, J. of Constr. Engrg. and Mgmt., 1998, 269-278, July/August Issue.

Ioannou P.G. and V. Likhitruangsilp. (2005). “Simulation of Multiple-Drift Tunnel
Construction With Limited Resources”, Proc. 2005 Winter Sim. Conf., eds. M. E.
Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, IEEE, Piscataway, NJ, 1765.

Ioannou P.G. and C. Srisuwanrat. (2006). “Sequence Step Algorithm for Continuous
Resource Utilization in Probabilistic Repetitive Projects”, In Proc. of the 2005 Winter
Simulation Conference, IEEE, Piscataway, New Jersey.

Martinez, J.C. and P.G. Ioannou. (1999). “General Purpose Systems For Effective
Construction Simulation,” Journal of Construction Engineering and Management,
American Society of Civil Engineers, (125)4, July-August 1999.

Sakamoto, M., Horman, M.J., and Thomas, H.R. (2002). “A Study of the Relationship
between Buffers and Performance in Construction” Proc. 10th Ann. Conf. Intl. Group
for Lean Constr., IGLC-10, August held in Gramado, Brazil, 13 pp.

Tommelein, I.D. (1997) “Discrete-event Simulation of Lean Construction Processes”
Proc. 5th Ann. Conf. Intl. Group for Lean Constr., IGLC-5, 121 – 135.

Tommelein, I.D., Riley, D., and Howell, G.A. (1998). “Parade Game: Impact of Work
Flow Variability on Trade Performance.” Proc. 6th Ann. Conf. Intl. Group for Lean
Constr., IGLC-6, 13-15 August held in Guaruja, Brazil, 14 pp.

