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ABSTRACT 
Occupational accidents are unquestionably wasteful and non-value adding events in any 
system of production.  Safeguarding construction workers from occupational hazards, 
whether arising from traumatic, ergonomic, and/or exposure accidents, is part and parcel of 
the lean construction ideal of waste elimination.  Howell et al. (2002) proposed a new 
approach to understand construction accidents based on Rasmussen’s theory of cognitive 
systems engineering.  One aspect of the model focused on worker training to recognize 
hazards (unsafe conditions).  The underlying assumption here is that workers will always 
recall what constitutes a safe or unsafe situation as well as respond to perceived or actual 
risks in the same manner.  Therefore, a methodology to assess worker sensitivity to unsafe 
conditions and risk orientation is needed.  This paper proposes a methodology based on 
Signal detection theory that was originally developed as an assessment technique for tasks 
requiring the detection of defective components in an industrial setting.  Discussion of signal 
detection theory and how it could be tailored for assessments of the sensitivity and risk 
orientation of construction workers to unsafe conditions is presented.  Application of the 
methodology is demonstrated using a pilot study involving structural steel workers.  The 
methodology presented in this paper could be used to give guidance to workers on how to 
enhance their abilities to identify the boundary beyond which work is no longer safe. 
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INTRODUCTION 
Each year, occupational injuries (traumatic, ergonomic, and/or exposure) and fatalities in the 
construction industry temporarily or permanently disable many and claim the lives of others.  
This problem is receiving increasing attention in the construction industry, as well as in other 
industries, not because of human suffering alone, but also due to many cost-related factors.  
Such factors include escalating workers’ compensation insurance costs, high direct costs of 
medical treatment and rehabilitation programs, and high indirect costs, such as administrative 
costs, productivity losses and lower morale.  These factors will increase construction costs, 
and adversely impact a contractor’s competitiveness. 

The staggering statistics collected and disseminated by occupational safety and health 
concerned organizations confirm the impact and importance of this problem.  The Center for 
Protecting Workers’ Rights reports that (CPWR 1998): “Construction safety and health death 
rate – 15 deaths per 100,000 workers, or more than 1000 killed yearly- is more than three 
time the rate for manufacturing in the United States……The more than 182,000 serious 
injuries annually in construction in the United States not only waste live and hurt 
productivity, but also substantially increase payroll costs (through workers’ compensation 
and other costs).” 

Occupational accidents are unquestionably wasteful and non-value adding events in any 
system of production.  Similar to other wasteful and non-value adding events that result in 
unreliable workflow such as late delivery of material and equipment, design errors, change 
orders, equipment breakdowns, and environmental effects, occupational accidents also result 
in the same.  When left uncontrolled, these factors create havoc on any construction project 
resulting in either barely meeting the numbers or suffering devastating losses.  Howell and 
Ballard (1994) state that achieving reliable workflow is possible when sources of variability 
are controlled.  It follows then that safeguarding construction workers from occupational 
hazards, whether arising from traumatic, ergonomic, and/or exposure accidents, is part and 
parcel of the lean construction ideal of waste elimination. 

Unfortunately, decades long efforts to combat occupational accident have stalled and 
improvements have reached a plateau.  This situation reflects a fundamental problem in 
understanding the accident process.  Thus far, most efforts to understand the accident process 
have failed to recognize the dynamic and dependent nature of construction work (Howell et 
al. 2002).  To include this missing dimension, Howell et al. (2002) proposed a new approach 
to understand construction accidents based on Rasmussen’s theory of cognitive systems 
engineering (Rasmussen et al. 1994).  The model suggested recognizes that organizational 
and individual pressures push people to work in hazardous situations.  These pressures defeat 
efforts to enforce safe work rules specifically in a changing work environment such as in 
construction.  Therefore, this approach emphasizes the need to train workers to be conscious 
of hazardous work environments and engage the work with better planning and appropriate 
protection in a very similar way to how fire fighters engage hazardous situations. 

The primary goal of this paper is to introduce a methodology to assess the occupational 
safety competencies of workers based on individual sensitivity to unsafe conditions and risk 
orientation.  This methodology, which is based on Signal Detection Theory (SDT), enables 
the implementation of the Rasmussen model by enhancing workers abilities to identify the 



 

boundary beyond which work is no longer safe.  To this end, the paper introduces and 
discusses the Rasmussen paradigm for understanding and eliminating accidents.  Guided by 
this new paradigm, the paper develops the SDT-based methodology. 

THE RASMUSSEN MODEL 
Despite the contributions of construction accident causation models in understanding the 
accident process, none of the models considered the dynamic nature of construction work and 
that accident scenarios differ in how they occur from site to site.  To include this missing 
dimension, Howell et al. (2002) proposed a new approach to understand construction 
accidents based on Rasmussen’s theory of cognitive systems engineering. 

The original model as proposed by Rasmussen is shown in Figure 1.  As shown, 
Rasmussen divided the work environment to three zones.  Zone I, which is the region 
enclosed by the “Boundary of unconditionally safe behavior”, “Organizational Boundary to 
Economic Failure”, and “Individual Boundary to Unacceptable Workload”, is considered the 
safe zone (Rasmussen et al. 1994, Rasmussen 1997). 
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Figure 1: Three Zones of Risk (Howell et al, 2002) 

Rasmussen states that due to economic or workload pressures, workers will shift their work 
along the workload and/or cost gradients, respectively.  Both gradients move from a high 
value to a lower value.  Thus, as long as workers remain within the safe zone, work activities 
can be safely performed.  Current safety regulations and management practices are directed 
at keeping the workers in the safe zone.  Rasmussen suggests that enlarging the safe zone 
through proper planning of operations will make the work safer. 

The zone encompassed by the “Boundary of Unconditionally Safe Behavior” and the 
“Irreversible Loss of Control Boundary” is Zone II or the Hazard zone.   Workers working in 
the Hazard zone are considered to be working at the edge (pushing their luck).  Note that the 
Hazard zone includes hazards that could result in traumatic, exposure, and/or ergonomic type 
accidents.  Rasmussen believes that, despite regulatory or supervisory efforts, workers will 



 

move to the Hazard zone due to many reasons.  He suggested, contrary to current 
conventional wisdom, that the only effective way to counter these tendencies to work in the 
Hazard zone would be to make the boundary beyond which work is no longer safe more 
visible and to teach workers to recognize the boundary and to cautiously engage the Hazard. 

The third and final zone in Rasmussen’s model is the loss of control zone where 
accidents occur and control is lost leading to injuries and/or fatalities.  For this zone, 
Rasmussen proposed that workers should be educated and trained on how to recover from 
such situations.  This is very similar to instructing drivers on how to handle slips on icy 
roads. 

Rasmussen’s theory recognizes that organizational and individual pressures will push 
people to work in hazardous situations.  These pressures defeat efforts to enforce safe work 
rules specifically in a changing work environment such as in construction.  Therefore, this 
approach emphasizes the need to train workers to be conscious of hazardous work 
environments and engage the work with better planning and appropriate protection in a very 
similar way to how fire fighters engage hazardous situations. 

According to Rasmussen the worker is the best person to judge the boundaries of safe 
work.  So instead of forcing workers to follow the rules and stay in the safe zone, Rasmussen 
suggested to train workers to: 

1. Identify which zone they are working in 

2. Identify hazards 

3. Prevent hazard release 

4. Recover when hazards are released 

While counterintuitive, Rasmussen’s recommendation to train workers to deal with hazards 
and recover from scenarios when control is lost recognizes that workers will frequently and 
inevitably work in the hazard zone.  Management pressures and seeking less physical, and 
perhaps mental, workload effort are realistic examples pushing workers to the hazard zone. 

The Rasmussen model is similar to the current trend in the social sciences of using social 
norms marketing.  In this approach, informing people what to do versus the traditional 
approach of telling people what not to do brings about desired behavioral changes.  For 
example, instructing heavy college-aged drinkers not to drink before driving and citing the 
grave consequences of such behavior has become an overrated message that lost its 
effectiveness.  Alternatively, social norms marketing follows a tact where people are given 
instruction on what to do if they would like to drink – To drink moderately and have fun 
while sparing yourself and others the risks. 

While Rasmussen still maintains that safety and performance will increase if the safe 
zone is enlarged with proper planning, he clearly acknowledges the need to tell workers what 
to do in the Hazard Zone and when control is lost versus the overrated messages workers 
hear, e.g., don’t dry-cut bricks because you will develop silicosis. 

It is worth noting that the Rasmussen model embodies many of the previously developed 
accident causation models by construction researchers.  For example, McClay’s ‘universal 
framework’ (1989) identified three key elements of accidents:  hazards, human actions, and 
functional limitations that are exceeded in the case of an accident (Rasmussen’s hazard 



 

zone).  Hinze’s distraction theory (1996) suggests that the probability of accidents increase 
when workers are distracted from thinking about their safety due to the stress of work or 
other factors (Rasmussen’s cost and workload gradients).  The root cause analysis model by 
Abdelhamid and Everett (2000) argues that management deficiencies or workers create 
unsafe conditions in the workplace, and that when faced with unsafe conditions workers 
either fail or succeed in identifying them (Rasmussen’s hazard zone).  The ‘constraints-
response’ model developed by Suraji et al. (2001) attributes accidents to distal and proximal 
factors which cause workers to respond in ways that may lead to accidents (Rasmussen’s cost 
and workload gradients).  Toole (2002) suggests eight root causes: lack of proper training, 
safety equipment not provided deficient enforcement of safety, unsafe equipment, method, or 
condition, poor safety attitude, and isolated deviation from prescribed behavior (all these 
conditions lead to losing control in the Rasmussen’s Hazard Zone). 

The acceptance and effectiveness of Rasmussen’s approach remains an open question 
that only future research can answer.  Howell et al. (2002) recommended that future research 
efforts consider the following three areas: 

1. IN THE SAFE ZONE:  Establish methods and techniques to enlarge the safe 
zone. 

2. AT THE EDGE:  Train workers on the identification of safe and unsafe 
conditions.  And once in an unsafe condition, workers should be trained on how 
to recover from errors. 

3. OVER THE EDGE:  People will inevitably make mistakes resulting in loss of 
control.  Hence, measures should be in place to limit the effect of this loss. 

This paper is concerned with the second area; “At the Edge”.  Teaching workers to recognize 
that they have stepped into the hazard zone appears to be achievable through intensified and 
directed training.  However, a major drawback is that most safety training workshops seldom 
evaluate comprehension and retention of communicated safety rules and regulations.  Hence, 
it is unreasonable to assume that workers will vividly recall rules and regulations when 
making a safe/unsafe decision. 

Training programs such as Crew Resource Management (CRM) could be used to 
overcome the passive nature of conventional safety training workshops (Helmreich et al. 
1999).  CRM primarily evolved as a tool to reduce the number of human-related accidents in 
the aviation industry.  This is not surprising given that the major contributing factor in 80% 
of commercial aviation accidents is attributed to human error (Federal Aviation 
Administration 1998).  The current generation of CRM training is founded on the fact that 
human error is inevitable.  Accepting this reality, it behooves management to institute an 
organization-wide safety culture.  For an in-depth discussion of CRM topics and techniques, 
the reader is referred to Helmreich et al. (1999) and Klinect (1999). 

The focus on worker training to recognize hazards (unsafe conditions) assumes that 
workers will always recall what constitutes a safe or unsafe situation as well as respond to 
perceived or actual risks in the same manner.  Regardless of the safety training program 
adopted, the focus on worker training to recognize hazards (unsafe conditions) frequently 
overlooks the fact that hazard recognition is contextual and subject to individual judgment 



 

and experience.  In other words, one worker may consider a situation hazardous while 
another worker would consider it perfectly safe.  Hence, the sensitivity of workers towards 
unsafe conditions will be different.  In addition, the tendency to work in known hazardous 
situations will depend on a worker’s risk orientation.  Therefore, a methodology to assess 
worker sensitivity and risk orientation is needed to give guidance to workers on how to 
enhance their abilities to identify the boundary beyond which work is no longer safe. 

Signal detection theory (SDT) is an assessment technique that was developed for tasks 
requiring the detection of defective components in an industrial setting.  A brief discussion 
on signal detection theory and how it could be tailored for assessments of the sensitivity and 
risk orientation of construction workers to unsafe conditions follows. 

SIGNAL DETECTION THEORY 
In the manufacturing industry, quality inspections are performed to identify and reject 
(remove) defective products.  The inspection problem is also found in other industries or job 
situations such as detecting a fracture on an X-ray plate by a radiologist, detecting weapons 
by an airport security guard, and, for the purposes of this paper, identifying unsafe conditions 
by a construction worker. 

An ideal quality inspection process would identify and reject all the defective products.  
This seldom occurs even with automated inspections.  The number of defective products that 
escape detection (misses) and non-defective ones that are rejected (false alarms) gives a 
measure of the effectiveness of an inspection process.  These two measures have also become 
the basis for characterizing the sensitivity of the operator (or machine) performing the 
inspection.  Researchers have dubbed the framework leading to such characterization as 
“Signal Detection Theory” or SDT (Ihara 1993 and Swets 1996). 

SDT is applicable in situations where two discrete states of the world (signal and noise) 
cannot be easily discriminated.  In such situations, a human operator (or machine) is faced 
with the task of identifying one of the states.  If the state of the world is a signal, e.g., a 
defective product, the response of the operator (or machine) is either ‘yes’ the product is 
defective (a HIT) or ‘no’ the product is not defective (a MISS).  If the state of the world is 
noise, e.g., the product is not defective, the response of the operator (or machine) is either 
‘yes’ the product is defective (a FALSE ALARM) or ‘no’ the product is not defective (a 
CORRECT REJECTION).  These situations are represented as shown in Table 1.  Clearly, 
the perfect result should only have ‘hits’ and ‘correct rejections’ – an ideal situation not 
possible in real life. 

Table 1: The four outcomes of signal detection theory (Wickens 1992) 

  State of the world 
  Signal Noise 

Y
es

 

HIT FALSE ALARM 
Response 

N
o MISS CORRECT 

REJECTION 



 

In a signal detection task, operators sometimes have response biases and are prone to say 
‘yes’ more often than they should thereby detecting most of the signal but also producing 
many false alarms.  The other response could be conservative by saying ‘no’ and producing 
fewer false alarms but missing many of the signals (Wickens 1992).  Depending on the task, 
an approach with fewer false alarms may be better than not missing any signal while having 
many false alarms. 

In SDT, the signal indicator or strength is assumed to have a normal distribution (argued 
using the central limit theorem).  It follows then that the information in Table 1 could be 
graphically represented as shown in Figure 2.  Xc, shown in Figure 2, represents the critical 
level where an observer decides the nature of a signal.  In other words, Xc represents the 
“mental” cut-off the observer uses to decide whether to say ‘yes’ there is a signal (a hit), or 
‘no’ there is noise (correct rejection). 

 

 
Figure 2: Signal and Noise Distribution (Wickens 1992) 

In Figure 2, the shaded portion on the left of Xc represents the missed signals by the 
observer.  The striped portion on the right of Xc represents the signals the observer 
incorrectly considered as hits, i.e., these are false alarms.  The change in the position of Xc 
determines the respective proportion of misses to false alarms (Swets 1996).  For example, if 
Xc cuts more into the signal side, then most responses will be ‘no’ resulting in numerous 
misses and fewer false alarms (as well as fewer hits).  If Xc cuts more into the noise side, 
most responses will be “yes” resulting in fewer misses but more false alarms. 

The mental cut-off, Xc, chosen by an observer is quantified using a parameter termed the 
response criterion or likelihood ratio and is denoted as βcurrent.  This parameter has also been 
termed the judgment or decision criterion of the observer.  Mathematically, and as shown in 
Figure 2, βcurrent is the ratio of the ordinates P (X/S) and P (X/N) for a given level of Xc.  P 
(X/S) and P (X/N) represent the conditional probability of Xc given a signal and the 
probability of Xc given noise, respectively.  βcurrent is calculated using Equation 1. 

)/(
)/(

NXP
SXP

current =β         (1) 

High values of βcurrent indicate a high number of misses, whereas a lower one will generate 
more false alarms.  Because of inter-observer variability with respect to the choice of Xc, 



 

evaluating the results of multiple observers requires the normalization of the value of βcurrent 
or the comparison to an optimal value.  The optimal value for β has been taken as the value 
corresponding to a minimum number of errors, i.e. minimum misses and false alarms.  
Mathematically, this value is the ratio of the probability of noise, P(N), and the probability of 
a signal, P(S).  Equation 2 gives this ratio. 

)(
)(

SP
NP

opt =β          (2) 

After finding the value of βcurrent and βopt, the pair are compared to determine whether an 
observer is following a risky or conservative strategy.  On the one hand, When βcurrent is 
greater than the value of βopt, this indicates that Xc is positioned more to the right resulting in 
less false alarms and more misses.  According to SDT literature, observers with such a 
mental-cutoff require more evidence to say ‘yes, a part is defective’, i.e., they’re less likely to 
say ‘yes’.  Operators adopting this strategy are considered conservative because they produce 
few false alarms, i.e., they reject fewer non-defective parts.  On the other hand, when βcurrent 
is less than βopt this indicates that Xc is positioned more to the left resulting in more false 
alarms and less misses.  Under SDT, this indicates that the observer needs considerably less 
evidence to say ‘yes, a part is defective’, i.e., they’re more likely or quick to say ‘yes’.  This 
strategy is considered risky because more false alarms will occur, i.e., the operator will reject 
more non-defective parts.  The underlying assumption in considering a strategy as 
conservative or risky is the cost of a false alarm compared to that of a miss.  To summarize, 
the rules for βcurrent and βopt are as follows: 

βcurrent >  βopt; strategy is conservative   (3) 
βcurrent <  βopt ; strategy is risky    (4) 

Another important measure of an observer’s performance in signal detection tasks is 
sensitivity to the signal and the noise.  This is measured by the degree of separation between 
the means of the two distributions shown in Figure 2 and is denoted as d′.  A high value of d′ 
indicates a high degree of separation and, thus, high observer sensitivity.  Data from 
numerous tasks indicate that d′ ranges in value from 0.5 to 2.0 (Wickens 1992). 

The value of d′ is determined by adding the two values z1 and z2 shown in Figure 2.  z1 
and z2 represent the value of the standard normal variable corresponding to the probability of 
a false alarm and probability of a miss, respectively.  The values are readily available from 
standard tables.  The application of SDT will be demonstrated using an example of a typical 
inspection process. 

EXAMPLE 
A manufacturer produces DC motors using a process that generates 5% defectives.  In 
response to increasing customer complaints, the manufacture instituted a final inspection 
system that finds 80% of defective motors at the expense of falsely rejecting 1% of good 
motors.  Determine the sensitivity of the operator and the strategy he/she adopts. 

Using the provided information, the following probabilities can be deduced: 
P (Noise) = P (product is not defective) = 95% = 0.95 



 

P (Signal) = P (product is defective)      = 5%   = 0.05 
P (Hit) = 0.80        P (Miss) = 1-P (Hit) = 0.20 
P (FA) = 0.01        P (CR) = 1- P (FA) = 0.99 

Calculation of the sensitivity, i.e., the value of d′, involves the standard normal values z1 and 
z2.  Using the P (FA) and P (Miss) and the standard normal table, the values of z1 and z2 are: 

z1 = 2.326 
z2 = 0.842 

and Θ d′ = z1 + z2 ∴∴∴∴d′ = 2.376 + 0.842   = 3.168.  This indicates5 a high degree of separation 
between the signal and noise distributions, i.e., the inspector has high sensitivity. 

As indicated by Equation 1, calculating βcurrent requires the determination of P (X/S) and P 
(X/N).  However, Figure 2 indicates that: 

P (X/S) = Ordinate corresponding to z2 
P (X/N) = Ordinate corresponding to z1 

Using standard statistical tables, P (X/S) and P (X/N) are as follows: 
Ordinate corresponding to z2 = 0.28 
Ordinate corresponding to z1 = 0.027 
∴βcurrent = 0.28 / 0.027 = 10.37 

Using Equation 2, βopt is: 
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NPopt =β       ⇒  

05.0
95.0=optβ  = 19 

Because βcurrent < βop the strategy is considered risky.  This means that the inspector’s cut-off 
level, Xc, is positioned more to the left, i.e., cuts more in the signal distribution. 

CONSTRUCTION UNSAFE CONDITIONS AND SDT 
Similar to inspection (detection) tasks in other industries, in construction, workers are 
expected to identify whether the condition they are working in is safe.  In SDT, the state of 
the world is represented by a signal and noise.  From a construction safety standpoint, the 
state of the world is either an “Unsafe” condition (signal) or a “Safe” condition (noise). 

When a particular condition is known to be “safe” and a worker is asked whether the 
condition is unsafe, one of two responses is possible, namely, ‘Yes’ condition is unsafe (false 
alarm), or ‘No’ condition is safe (correct rejection).  Conversely, when facing a known 
“unsafe” condition and a worker is asked whether the condition is unsafe, one of two 
responses may be given, namely, ‘Yes’ condition is unsafe (Hit), or ‘no’ condition is safe 
(Miss).  Table 2 shows the SDT matrix for these scenarios. 

The ideal scenario is for a worker to correctly identify the unsafe and safe conditions.  
Some workers may be capable of this but others will incorrectly consider a condition as safe 
while it is unsafe, and vice versa.  Signal detection theory allows the determination of the 
sensitivity of workers to safe (or unsafe) conditions as well as their inclination (bias) to 
consider a situation as safe (or unsafe) while it is not. 
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Table 2: The SDT matrix for detection of unsafe conditions in construction 

  State of the world 
  Unsafe Condition 

(Signal) 
Safe Condition 

(Noise) 

Y
es

 

HIT FALSE ALARM Response 
(Q: Is 
condition 
unsafe?) N

o MISS CORRECT REJECTION 

As explained before, d′ and beta (current and optimum) are the SDT parameters or metrics 
used to assess a worker’s sensitivity to unsafe and safe conditions as well as the inclination to 
consider a condition as safe or unsafe.  High values of d′ indicate high sensitivity in 
differentiating safe from unsafe conditions.  Conversely, low values of d′ indicate that a 
worker needs more training to recognize the two conditions. 

Regardless of the value of d′, the mental cutoff used by a worker to decide the state of a 
condition is given by the value of βcurrent with respect to βopt.  However, considering the 
implementation of SDT in construction, interpreting the values of βcurrent and βopt requires a 
modification. 

As discussed before, a βcurrent value greater than βopt indicates a conservative strategy 
because few false alarms and many misses will result.  Similarly, a value of βcurrent smaller 
than βopt is considered a risky strategy because many false alarms and few misses will result.  
However, in construction, the cost of a miss could result in a fatality or a serious injury.  
Therefore, in construction, having more false alarms and fewer misses would be a 
conservative strategy while having fewer false alarms and more misses would be a more 
risky strategy.  Accordingly, the construction-equivalent for rule (3) and (4) take the 
following form: 

βcurrent >  βopt ; strategy is risky    (5) 
βcurrent <  βopt ; strategy is conservative   (6) 

Assessing worker performance in detecting unsafe and safe condition in real time is difficult 
and may be dangerous for both workers and observers.  The alternative is to survey workers 
about whether they consider a particular situation unsafe.  This approach will allow the 
assessment of the occupational safety competency of a worker but not the tendency of a 
worker to work in a condition despite knowing its unsafe.  To assess whether a worker would 
work in a condition despite being unsafe requires a technique such as CRM wherein on-the-
job performance is monitored by an observer. 

Table 3, shows a sample survey, with ideal answers, designed using part of the 
Occupational Safety and Health Administration (OSHA) fall protection standards (see Toole 
and Gambatese (2002) for a primer on OSHA).  An OSHA inspector provided assistance in 
developing the survey questions.  For each question, the worker chooses from one of three 
responses:  a) Condition is unsafe; b) Condition is safe; c) I Don’t know.  The survey was 



 

primarily intended as a pilot and, therefore, is neither comprehensive nor exhaustive.  To 
illustrate the use and analysis of the survey, five ironworkers (average age was 32 and 
average construction experience was 8 years) were selected at random to complete the 
survey. 

The result for one of the workers is shown in Table 4.  Based on the responses, the 
number of hits, misses, false alarms, and correct rejections are determined and converted to 
probabilities.  For example, if a question portrayed a safe condition and the worker’s 
response was ‘unsafe condition’ or ‘I don’t know’, then this was considered a false alarm.  If 
the question portrayed an unsafe condition and the worker’s response was ‘safe condition’ or 
‘I don’t know’, then this was considered a miss.  A hit or a correct rejection results when the 
worker correctly identifies an unsafe condition as unsafe or a safe condition as safe. 

Table 3: Sample Construction SDT Survey 

RESPONSE 
INTERVIEW QUESTIONS 

Condition is Unsafe Condition is 
Safe 

I Don’t 
Know 

1) Working on a 130 ft high coupler scaffold 
designed by your company’s foreman.  

  

2) Working on a scaffold that is 8 feet above the 
lower level with no fall protection.   

3) Working on a scaffold 10 feet above the lower 
level with no fall protection.   

4) While bolting and welding is taking place for the 
1st floor of a 10-story building, you were asked to 
start work on perimeter beams on the 4th floor. 

  

5) Working on the 13th floor of a building where 
permanent floors have been installed to the 6th floor 
only. 

  

6) Working on a 3,500 sqft decking when you know 
it is unsecured.   

7) Working on a 3,000 sqft decking when you know 
it is unsecured.   

8) A 50-inch square opening was created during the 
renovation of a flat roof.   

9) Working on a 2,500 sqft decking when you know 
it is unsecured.   

10) While bolting and welding is taking place for 
the 1st floor of a 10-story building, you were asked 
to start work on perimeter beams on the 3rd floor. 

  



 

Table 4:  Sample survey analysis results  

  State of the world 
  Unsafe Condition

(Signal) 
Safe Condition 

(Noise) 

Yes HIT = 1 FALSE ALARM = 1 Response 
(Is condition unsafe?) No MISS = 3 CORRECT REJECTION = 5 

 

Note that: 
P (Noise) = P (safe conditions) =  4/10  = 40% 
P (Signal) = P (unsafe condition)  = 6/10 = 60%. 
 
P (Hit) = 1/4         P (Miss) = 1-P (Hit) = 3/4 
P (FA) = 1/6        P (CR) = 1- P (FA) = 5/6 

Calculation of the sensitivity, i.e., the value of d′ involves the standard normal values z1 and 
z2. Using the P (FA) and P (Miss), the values of z1 and z2 are: 

• z1 = 0.994 and z2 = 0.674 

• Θd′ = z1 + z2  ∴∴∴∴d′ = 0.994 + 0.674  = 1.668 

Because d′ typically falls between 0.5 and 26, the value of d′ for this worker indicates a 
moderate degree of separation between the signal and noise distributions, i.e., the worker has 
moderate sensitivity.  To calculate βcurrent and  βopt , the ordinates corresponding to z1 and z2 
are determined: 

• Ordinate corresponding to z2 = 0.318 

• Ordinate corresponding to z1 = 0.243 

• Using Equation 1:  βcurrent = 0.318 / 0.243 = 1.31 

• Using Equation 2: βopt = P (Noise) / P (Signal) = 0.4/0.6 = 0.67 

Θβcurrent > βopt  ⇒ the worker is using a risky strategy, i.e., the worker will have more misses 
than false alarms (see rules 5 and 6). 

Table 5 lists the results for the 5 workers surveyed in this study.  As shown in Table 5, 
the results don’t vary on sensitivity of the workers but 4 out of 5 have a risky strategy, i.e., 
they have more misses than false alarms.  It is worth noting that none of the workers selected 
option ‘c’.  While the sample size is quite small to facilitate statistical analysis and 
inferences, aggregation of results may not be necessarily meaningful other than for group 
characterization.  Individual scores of workers will serve as better input to training design. 

 

                                                 
6  0.5 ≤ d′ < 1.0 ⇒ low sensitivity; 1.0 ≤ d′ < 1.5 ⇒ moderate sensitivity; 1.5 ≤ d′ ⇒ high sensitivity 



 

Table 5: Sample survey analysis results  

Worker D′ Sensitivity  βcurrent Strategy 

1 1.68 Moderate 1.31 Risky 
2 1.05 Moderate 1.98 Risky 
3 0.68 Moderate 3.2 Risky 
4 1.56 Moderate 1.05 Risky 
5 1.38 Moderate 0.35 Conservative 

The above example illustrates how the sensitivity and risk orientation of a worker can be 
determined.  This information sets a benchmark against which the effectiveness of new 
training can be assessed.  Essentially, this information would make it possible to determine if 
a worker’s sensitivity and risk orientation towards safe and unsafe conditions increased, 
decreased, or remained unchanged.  Ultimately, the use of SDT will result in increasing 
workers abilities to judge the boundary beyond which work is no longer safe.   

CONCLUSION 
The Rasmussen model for accident causation presented in this paper departs from 
conventional thinking that workers or management are at fault for accidents and that through 
informing each side what to do and how to perform, safety will be improved.  The model 
states that organizational and individual pressures push people to work in hazardous 
situations and that these pressures cannot be ignored nor magically relieved through worker 
training and enforcement of safety regulations.  The model indicates that workers will 
inevitably choose to work or find themselves forced to work in the hazard zone.  Therefore, 
management must adopt a social norms marketing approach and train workers on how to 
work with hazards and how to regain control once it’s lost. 

Implementation of the Rasmussen model will require a concerted effort on the part of 
both academia and industry.  Future research should be guided by the strategy recommended 
in Howell et al (2002), which, at the expense of being repetitious, is reproduced here: 

1. IN THE SAFE ZONE:  Establish methods and techniques to enlarge the safe 
zone. 

2. AT THE EDGE:  Train workers on the identification of safe and unsafe 
conditions.  And once in an unsafe condition, workers should be trained on how 
to recover from errors. 

3. OVER THE EDGE:  People will inevitably make mistakes resulting in loss of 
control.  Hence, measures should be in place to limit the effect of this loss (safety 
net). 

This paper discussed the use of Signal Detection Theory as an enabler for worker’s behavior 
“At the Edge”.  The methodology presented allows the assessment of a worker’s 
occupational safety competency.  It also facilitates the evaluation of training efforts directed 
at teaching workers how to identify the zone (condition) they are working in.  However, as 
used in this paper, the SDT assessment does not provide evidence of whether a worker would 



 

in fact proceed with work after identifying an unsafe condition.  This important issue can be 
assessed using CRM techniques. 

Additional research is needed to develop surveys for other types of construction work and 
investigate the relation between age and work experience and occupational safety 
competency.  Other researchers may choose to further develop the SDT-based method or find 
other methods from other disciplines or industries.  Regardless of the approach, efforts to 
develop new tools and ideas aimed at improving construction safety and health should be 
guided by Rasmussen’s model. 
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