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ABSTRACT  
Production system design, planning and control are limited both by the incomplete situational 
awareness of planners and by their inability to predict the range of possible outcomes of their 
planning and control decisions. With the development of information technologies for 
monitoring products and processes on construction sites, it is increasingly possible to provide 
detailed status information describing the as-built products ‘as-built’ and processes ‘as-
performed’. This opens the door to applying predictive analytics to provide decision-makers 
with frequent predictions of the outcomes for a range of changes they might contemplate to the 
production system design, even during construction. Within the BIM2TWIN project, we are 
designing and implementing an agent-based simulation engine that is a core component of an 
Automated Decision Support System. Currently, the simulation can be calibrated to accurately 
predict the range of likely project durations for a residential construction project. However, 
certain aspects of the trade crews’ performance, particularly with respect to the completion of 
tasks, appear to differ from the behaviours described by industry experts and encapsulated in 
the crew agent behaviour tree in the simulation. 

KEYWORDS 
Production system design, production planning and control, agent-based simulation, decision-
support. 

INTRODUCTION 
The design of a production system plays a critical role in determining its overall performance. 
A well-designed system not only ensures efficient production processes but also provides the 
foundation for effective planning and control. However, if the system’s configuration is not 
optimal from the outset, even the most sophisticated planning and control techniques may not 
achieve the desired outcomes (Schramm et al. 2006). 

The status quo in production system design (PSD) is that it is primarily performed until 
construction begins, at which point the production system configuration becomes largely static, 
and actions are limited to the scope of production control. This often leads to suboptimal 
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solutions as the planners struggle to find the optimal configuration among the exponentially 
increasing solution space due to the large number of interconnected and interdependent 
variables at play. Without automation, planners must rely on known best practices, trial-and-
error and their intuition and experience. This results in static production systems that are 
suboptimal with respect to the dynamic circumstances of construction sites, as opposed to the 
relatively stable environment of manufacturing plants. 

An alternative approach is to apply automation to explore continuous optimisation of the 
production system configurations and parameters within the degrees of freedom of the system. 
This implies a shift from PSD as a planning exercise performed exclusively before construction 
to being an integral layer of production planning and control during construction. In this 
scenario, an automated decision support system (ADSS) would search the solution space to 
optimise the process, enabling the identification of multiple feasible alternatives. Additionally, 
it would provide forward-looking situational awareness (Lappalainen et al. 2021; Martinez et 
al. 2023), allowing planners to understand how the current production system configuration, as 
well as any alternative configurations, are likely to perform in the near future. Thus, planners 
could make better-informed decisions about the production system. 

ADSS systems leverage the power of modern machines and information technologies to 
process data, optimise solutions, and analyse results (Bucklin et al. 1998; Payne 2000; Power 
and Sharda 2007). The core function of an ADSS is to predict the future behaviour of the 
production system based on its configuration and current status using digital simulation or 
statistical methods such as machine learning. The goal of an ADSS is to perform objective, 
comprehensive analyses of current and alternative production system configurations in very 
short times by virtue of automation, thus making continuous PSD through construction possible. 

We present a novel predictive agent-based simulation framework for use within an 
automated decision support system (ADSS) for production planning and control. The 
framework is driven by 15 production system design parameters and generates 17 types of 
output data for performance evaluation. The capabilities of the simulation are demonstrated 
through the use of a real-world construction project in Finland, highlighting its current 
prediction capabilities and limitations. Furthermore, the paper outlines areas for improvement 
to further enhance the simulation’s prediction accuracy and usefulness in real-world scenarios. 

BACKGROUND 
Automated decision-support systems (ADSS) are computer-based systems that augment 
decision-making by leveraging computer power to process data, make calculations, and 
generate information and knowledge to enhance situational awareness (Feng et al. 2009). ADSS 
can explore larger and more precise solution spaces than traditional trial-and-error-based 
planning approaches. This is achieved using advanced algorithms, such as mathematical 
optimisation, machine learning, and simulation, that can generate multiple solutions in a short 
period of time. With access to a large solution space, planners can identify feasible options, 
including some that may not have been considered previously, and select the most optimal for 
the project (Beynon et al. 2002; Marakas 2003). Thanks to automation, this can be done in much 
shorter times and with minimum effort (Gonzalez 2005). 

Additionally, the use of computer algorithms helps ensure that solutions are not only optimal 
but also consistent, thus reducing the impact of human error and bias, which is especially 
relevant in the context of rapidly changing and uncertain construction environments. Future 
ADSS for construction may leverage data collected onsite, such as through digital twin and 
automated progress monitoring technologies (Kunath and Winkler 2018), to make evidence-
based, explainable decisions that can improve the transparency and accountability of the 
planning process, as well as enhance trust and collaboration among project stakeholders 
(Coelho et al. 2021; Yeung et al. 2022). 
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Researchers have developed decision-support tools and systems for PSD. Draper and 
Martinez (2002) evaluated alternative production system designs for selected building 
construction processes with discrete event simulation (DES) to expose waste and artificial 
constraints hidden in the production system. Schramm et al. (2008) applied DES models in the 
decision-making process for the design and operation of house-building projects. The 
simulation models identified configuration options that reduced the total construction time. This, 
in turn, provided construction company production managers the ability to evaluate different 
scenarios and develop more efficient construction sequences, which led to a reduction in non-
value-adding activities. Jadid and Badrah (2012) implemented a decision-support system for 
material selection based on value engineering to enhance interdisciplinary knowledge-sharing. 
These solutions have shown that proper decision-support systems can facilitate continuous 
improvement in all projects to improve their performance (Dave and Koskela 2009) and 
enhance the competitiveness of organisations with high absorptive capacity (Cohen et al. 1990). 

Many existing decision-support systems use computer simulation as the mechanism for 
optimisation (AbouRizk 2010). Production systems in construction involve many heterogenous 
and interdependent components with stochastic behaviours, making it difficult to describe them 
with mathematical models without oversimplification (Abdelmegid et al. 2020). Simulation 
modelling allows for the description of a production system’s components and their interactions, 
leveraging computer processing power to project and analyse the performance of the system. 
Additionally, a simulation can be used to optimise different aspects of the production system, 
such as resource allocation, scheduling, and process design, by changing the input parameters 
and observing the resulting output (Martinez 2010). 

Of the main modelling approaches, agent-based simulation (ABS) particularly excels in 
producing explainable results (Bonabeau 2002). ABS uses a bottom-up, actor-oriented 
approach to represent systems as collections of autonomous agents interacting with each other 
and the environment. The interactions between agents give rise to emergent phenomena that 
can be observed at system-wide levels. Faithful reproduction of the behaviours of the individual 
agents within the system supports a comprehensive understanding not only of the overall system 
performance but also of the contributions of individual components (Macal 2016). 

In recent years, researchers have applied ABS to investigate various aspects of construction 
production systems. Ben-Alon and Sacks (2015) developed the EPIC simulation tool to assess 
the impact of production control methods and information flow on production. Shehab et al. 
(2020) simulated construction crew performance using a hybrid ABS-DES model to facilitate 
weekly work planning in the Last Planner System. Barazi et al. (2021) proposed using ABS to 
study how parameter changes in vertical logistics systems can impact production performance 
in high-rise building projects.  

SYSTEM DESIGN AND IMPLEMENTATION 
The proposed system aims to assist planners in promptly exploring and optimising PSD at 
multiple points in a project by using project status and intent information. Specifically, by using 
parametric agent-based simulation, the ADSS can explore and evaluate a set of decision 
parameters, including changes in labour and/or resource allocations and in production control 
policies.  

To design the system architecture, define the PSD decision parameters and outline the 
parametric agent-based simulation, we conducted a four-step process that included a literature 
review, gathering information from an expert panel, interviewing production planners, and 
observing and mapping agents’ behaviours on construction sites. An expert panel of eight 
construction professionals from Finland, Spain, and France were consulted to specify the 
system features and functionalities. To define typical decision parameters used to make changes 
in production plans, we conducted 18 semi-structured interviews with production planners 
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(Martinez et al. 2022). Through a behaviour mapping exercise on construction sites, we 
identified and mapped the behaviours of crews, supervisors, and site engineers in traditional 
building construction projects using decision trees. To design the overall system architecture, 
we applied a backward design approach and used a BPMN diagram to illustrate the system 
components and process flow, considering the functional requirements specified in the first step 
(Sacks et al. 2020). 

The ADSS system comprises five main modules: 1) the User Input Module, 2) Simulation 
Module, 3) Alternative Plan Evaluation Module, 4) Alternative Plan Optimisation Module, and 
5) Recommendation Dashboard Module. These modules work together to provide 
comprehensive decision support for construction production planning and control. The User 
Input Module receives the user’s input information and selects the most suitable set of 
alternative production plans for simulation. The Simulation Module, designed according to 
agent behaviour specifications and implemented in AnyLogic® software, simulates the sets of 
alternative plans. The Alternative Plan Evaluation Module receives the raw outputs from the 
Simulation Module, evaluates alternative plan performance, and compiles decision aid elements 
and KPIs. The Alternative Plan Optimization Module enables users to generate additional 
alternative plans and simulation iterations based on optimisation algorithms. The 
Recommendation Dashboard Module presents the simulated production plans and their 
decision aids, allowing users to make informed decisions on the production plan to be applied 
in the next production cycle. The ADSS system includes two databases: 1) a Local Database 
that contains the baseline production plan, the constructed complete alternative production 
plans, their evaluation results and visualisation data, and 2) a Digital Twin Platform, which is 
a graph-based online repository for storing up-to-date project information. 

 
Figure 1: Overall System Architecture. 

Table 1 details the 15 production system parameters that users can explore in the proposed 
ADSS. If a user decides to explore alternative production systems by modifying some of the 
parameters, such as adjusting crew sizes, the simulation engine can interpret the changes and 
apply them to the simulation before each run. In any given situation, there are multiple agents 
(managers, crews, equipment, materials, locations, suppliers, designers, etc.); each agent has 
multiple parameters, and each parameter can have some set of discrete values. For example, a 
‘drywall crew’ agent may have a ‘crew size’ parameter, which may range from 4 to 6 workers. 
As such, the potential solution space is a complex product of the number of agents, parameters 
and possible parameter values. This yields combinatorially large numbers of production system 
configurations.  

The predictive simulation engine in this ADSS uses the agent-based modelling approach. 
Agent-based modelling is a computational approach that simulates the behaviour of individual 
agents within a complex system. These agents have their own attributes, behaviours, and 
decision-making processes. They interact with one another in a decentralised fashion to create 
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emergent system-level outcomes. In agent-based simulation models, agent classes are used to 
represent the general types of entities in a system, and specific instances of these agents are 
generated during a simulation run based on input data. This allows the model to represent the 
system at the individual level while also capturing the collective behaviour and interactions that 
arise between the agents. 

Figure 2 gives an overview of the agent-based simulation engine’s structure which includes 
the five classes of agents in the agent-based simulation model developed for this study: Work 
Crew, General Contractor Management (GC), Subcontractor Management (SC), Supplier, and 
Design Firm. The colour-coded rectangular boxes represent the different behaviours that each 
agent possesses, and the dotted lines show the interactions between these behaviours. This 
visual representation provides an overview of the behaviours and interactions of the different 
agents within the model and helps to understand how the system functions as a whole. For more 
details on the parametric generation framework, please refer to our recent paper (Yeung et al. 
2022). 

Table 2: Production system parameters. 

Category Parameter Description 
Labour Production rate The production rate for the specific crew (probabilistic-

deterministic) 

Crew size The crew size for each specific crew 

Number of crews Add or remove a crew 

Crew calendar Adjust the crews’ calendars 
Equipment 
 

Maintenance rate The equipment maintenance rate 

Number of equipment Assign or remove equipment for a specific Work 
Package 

Equipment availability Modify the availability time of equipment 

Material Material batch size Change the material batch size for any material 

Material delivery frequency Vary the material delivery frequency 

Material’s buffer quantity Vary materials’ buffer quantities (percentage) 

WBS 
 

Task sequence Change the task sequence 

Prerequisite tasks Vary the prerequisite tasks 

LBS Construction site zones Modify the construction site zones (Location-Based 
Schedule (LBS)) 

Production 
Control 
Policies 
 

Material arrival strategy 
(pull or push) 

Defines the material arrival strategy (push or pull) 

Work Package or location 
selection based on 
production planners’ 
preference 

The system gives priority to work packages where the 
largest quantity of productive work is available 

The system gives priority to spaces where work has 
already begun 

The crews assign the highest priority to spaces with 
the smallest amount of remaining work (Constant Work 
in Progress (CONWIP)) 

Logistics Policy The user changes the logistics supply chain type for a 
certain material 
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Each of the behaviours shown in Figure 2 was first defined in a behaviour map by construction 
experts and then coded as software routines in the simulation model. As an example, Error! 
Reference source not found. shows a behaviour map for the task assignment behaviour of the 
GC Management agent. A section of the corresponding logic tree in the AnyLogic software is 
shown in Figure 4. 

Table 3 lists some of the result data that the simulation engine produces per simulation run. 
Each output is time series data, meaning that it is recorded at a specified frequency. This data 
is provided for each activity and resource, allowing diagnosis of the performance of the system 
at a fine-grained level. The abundance of high-resolution output data can be used to boost the 
ADSS’s explainability to users, giving them confidence in the recommended solutions. It also 
enables calibration and validation of the simulation engine’s prediction capability with high 
precision. 

Table 3: Result data provided by the simulation engine. 

Category Output Description 
Trans-
formation 

Productivity Work quantity completed per unit of resource input 

Resource Consumption Quantities of material, equipment and labour effort 
consumed 

Earned Value Accumulated value of work completed 

Project Progress Percentage of work completed out of the whole project 

Flow Cycle Time Amount of time it takes to complete a unit of product 
(e.g., apartment, floor) 

Throughput Number of products completed within a given period 

Work In Progress Amount of work in progress at a given time 

Non-Value Adding (Idle) 
Time 

Amount of time a crew has been initiated but is not 
actively working on a task 

Space Conflicts Number of times two or more crews require the same 
work location 

Material Buffer Size Amount of material stored at a location at a given time 

Delivery Delays Number of material deliveries delayed 

Equipment Capacity 
Utilisation 

Percentage of total available time an equipment was 
utilised 

Value Material Delivery Date Timestamp when a material order was fulfilled 

Resource Consumption Quantities of material, equipment and labour effort 
consumed 

Rate of Rework Percentage of tasks/products requiring rework 

Quality Control Percentage of tasks/products containing defects 

Handover Date Timestamp when a unit of product was handed over to 
the customer 
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Figure 4: Agent classes and their behaviours in the ABS model. 

CALIBRATION AND VALIDATION 
To test and demonstrate the forecasting capabilities of the simulation engine, we apply it to an 
as-performed project dataset captured in a construction project of an eight-story prefabricated 
concrete residential building in Finland. The dataset covers the interior finishing phase of the 
project. It includes as-planned and as-performed progress, work quantities, planned production 
rates, a detailed work breakdown structure, and a location breakdown system. We used the 
progress data for validation and the rest of the data to set the initial production system 
parameters for the simulation. We ran 500 simulation runs using a Monte Carlo sampling 
method where the variance in supply chain reliability fluctuates randomly. 

Figure 5 visualises the trajectory of project progress through time as a percentage of total 
tasks completed from the chosen start point (day 60 of the project). The as-planned progress 
curve is plotted in black, and the actual progress curve is plotted in red. The trajectory of each 
simulation run is plotted in a green spectrum, where lighter greens indicate earlier project end 
dates and darker greens indicate later dates. The figure shows a) that the actual progress 
deviated significantly from the planned schedule and b) that the actual trajectory falls within 
the range of the simulation’s predictions.  

Note that the planned trajectory lies at the left side of the distribution, suggesting that it was 
highly improbable, as would be expected in the case of a plan prepared using the Critical Path 
Method (CPM). This can be seen clearly in the histogram of project end dates presented in 
Figure 7. Here, we see that the actual end date and the planned end date are more than 30 
working days apart, while the mean of the distribution of end dates is just ten working days 
earlier than the actual end date. The planned end date intersects the cumulative distribution 
curve at around 0.2 (i.e. a 20% probability of completing the project as planned).  

Although the simulation results are promising in terms of projecting progress, a careful 
analysis of operational flow in these runs reveals that there is still much room for improvement 
in accurately simulating the actual flow patterns in real-world projects. Figure 8, a histogram 
of average cycle time per floor, shows that although the simulation results are closer to the 
actual results than are the actual outcomes for cycle times, they do not capture the actual patterns 
of flow. This discrepancy is also apparent in Figure 7, where the planned line of balance 
schedule is plotted against the actual status and against a representative simulation run. Towards 
the end of the project, there are multiple independent finishing activities scheduled in a tight 
time window. According to the actual record, these activities overlapped and intersected with 
one another in every location. In contrast, in the simulation run, the activities were performed 
in a relatively ordered way despite being scheduled tightly together. 
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Figure 5: Progress trajectory of 500 simulation runs (green) plotted against the planned 

(black) and actual (red) progress. 

 
Figure 6: Line of Balance Charts. The top plot is the planned schedule versus the actual status. 
The bottom plot is the planned schedule versus a sample simulation run. In both plots, the as-

planned schedule is plotted in semi-transparent colours. 
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Figure 7: Histogram of project end date 

 
Figure 8: Histogram of average cycle time 

per floor 

CONCLUSION AND FUTURE WORK 
Automated Decision-Support Systems (ADSS) are essential components for adopting a broader 
view of production system design (PSD), extending PSD from a static, one-off design 
endeavour to a dynamic process of continuous improvement with optimisation. An automated 
ADSS can potentially help production planners explore the full feasible solution space to find 
optimal, evidence-based decisions in very short response times, making PSD a feasible exercise 
within the scope of lookahead production planning, and even weekly control, during the 
construction phase. The core function of such an ADSS is a predictive simulation engine that 
can project the probable future behaviour of a production system given its configuration, its 
current status, and the behaviours of its agents. 

The paper detailed the input, output, and overall structure of a predictive simulation engine 
for an ADSS that is part of our ongoing effort to build such a system within the context of the 
BIM2TWIN project (BIM2TWIN 2021). Although the simulation can, at present, generate 
predictions of project duration that are a very good fit to the actual record of a validation project, 
a closer analysis of the results reveals that important discrepancies between the simulation 
results and the actual patterns of operation flow behaviours remain. This appears to be the result 
of discrepancies between the ways in which construction professionals at all levels understand 
and thus describe their behaviours and the ways in which they actually behave. This manifests 
in particular when crews complete the majority of the work in a given task or work package, 
but leave the final details unfinished, resulting in multiple instances of re-entrant flow in the 
actual record, and long cycle times for apartments, for example. Work remains to refine the 
behaviour of the agents to reflect this behaviour and to identify the production system 
parameters under which it occurs. 
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