

SLACK IN CONSTRUCTION -PART 1: CORE CONCEPTS

Carlos Formoso, Iris Tommelein, Tarcísio Saurin, Lauri Koskela, Marcus Fireman, Karina Barth, Fernanda Bataglin, Daniela Viana, Rafael Coelho, Vishesh Singh, Carolina Zani, Natalia Ransolin, Claudia Disconzi

ABOUT THIS RESEARCH

- **Outcome of a non-conventional research project**
- Result of literature review and theoretical discussions •
 - Group of 13 academics (5 professors and 8 graduate students) from three universities
 - 10 weekly on-line meetings during a 4-month period
 - Development of a concept map

Iris D. Tommelein

Lauri Koskela

Fireman

Karina Barth

Fernanda Bataglin

Vishesh Singh

Carolina Zani

Natalia Ransolin

Claudia Disconzi

Formoso

Daniela Viana

Rafael Coelho

INTRODUCTION

- Much research has been done on how to use buffers to protect construction projects from the detrimental impact of variability
 - There used to be a **Buffer Management track** in past IGLC conferences
- Buffer has been defined as a cushion of resources, e.g. time, materials, capacity, and money (Alves & Tommelein, 2003)
- Previous studies are strongly based on the strongly based on the queueing theory (Spearman and Hopp, 2020), in which production is modelled as a natural science phenomenon

INTRODUCTION

- Limitations of buffer management techniques:
 - They deal with variability that is **statistically described in advance**
 - However, it is **hard to anticipate and quantify uncertainty** (unpredictable variability) in complex projects (Ballard et al., 2020)
 - The concept of buffer is usually **focused on built-in and designed strategies and resources**, neglecting resilient performance that arises from **self-organisation**, **initiative-taking**, **and resourcefulness of people**

AIM OF THE STUDY

- The aim is to develop the concept of slack and to discuss its relationships with other similar concepts, e.g. buffer, resilience, safeguards, flexibility, and redundancy.
 - This new conceptualization assumes that construction projects must be regarded as **complex socio-technical systems**:
 - (a) Must integrate a **wide range of risk coping mechanisms** that account for **both formal and informal** approaches, across **different hierarchical levels**
 - (b) Should inspire a revision of Lean Construction practices so that they are **fit to address the growing complexity of construction projects**.

THE COMPLETE CONCEPTUAL MAP

Concepts come from several disciplines:

- Engineering
- Organisational behaviour
- Innovation management
- Complexity theory
- Etc.

WHAT IS SLACK?

- Slack allows an organisation to adapt successfully to internal pressures for adjustment or to external pressures for change in policy (Bourgeois, 1981):
 - Includes protecting workflows (technical buffer), but also strategic management, conflict resolution, improvement, innovation, etc.
- Slack plays a key role by enabling people to pay attention, think, and benefit from knowledge (Lawson, 2001):
 - Complex projects require more, not less, time for monitoring and processing information

WHAT IS SLACK?

- The **narrow definition of buffer** often used in project management is similar to the concept of **technical buffer** (Bourgeois, 1981)
- Safeguard is a concept also used in the project management literature (especially in mega projects): the design and physical development work for ensuring, or enhancing the embedment of an option in the project outcome (Gil, 2007)
 - Mostly focused on work-in progress, and also on financial slack.

HOW TO IMPLEMENT SLACK?

There are different ways of categorising slack resources:

- Actual or Potential
- Opportunistic or Planned
- Time to release

- Time available
- Degree of visibility

HOW TO IMPLEMENT SLACK?

- Slack strategies can be classified in two core categories:
 - Redundancy
 - Flexibility

HOW TO IMPLEMENT SLACK?

- Slack strategies can be classified in two core categories:
 - Redundancy
 - Flexibility 🔨

•

• Margin of manoeuvre

Four main categories of positive impacts of slack were identified in this investigation:

• Resilience

- Reliability
- Robustness
- Flexibility of output

Four main categories of positive impacts of slack were identified in this investigation:

- **Resilience:** is the intrinsic ability of a system to adjust its functioning so that it can sustain required operations under both expected and unexpected conditions
- Reliability

- Robustness
- Flexibility of output

Four main categories of positive impacts of slack were identified in this investigation:

• Resilience

- **Reliability:** is the ability of a system and its components to perform required functions under stated conditions for a specified period of time
- Robustness
- Flexibility of output

Four main categories of positive impacts of slack were identified in this investigation:

• Resilience

- Reliability
- **Robustness:** is the preservation of particular characteristics despite uncertainty in the components or in the environment. If parts of the system are removed, its behavior tends to persist
- Flexibility of output

Four main categories of positive impacts of slack were identified in this investigation:

• Resilience

- Reliability
- Robustness
- **Flexibility of output** is concerned with adapting products to fulfil specific customer requirements, without affecting system performance or cost.

- From the perspective of the Lean
 Production philosophy, a negative impact of slack is the occurrence of waste.
- Slack as a potential category or source of waste should be measured and reduced, as part of continuous improvement programs

DISCUSSION

- The traditional concept of Buffer is aligned with Factory Physics developments, i.e. a natural science understanding of production
- The **central problem of production is uncertainty**, which is understood mostly as flow and process variability.
- Buffers are seen as the most important way to mitigate variability, and mathematical models allow the optimal positioning and sizing of buffers

DISCUSSION

- The **concept of Slack** is aligned with a different conceptualization of production:
 - Production must be regarded as an open, evolving system, covering all uncertainties and risks from the environment of the system as well as the possibility of change, learning and creativity;
 - The **possibility of emergence** of new outcomes must be considered.
 - Human beings, with all their capabilities, must be included in the analysis; especially, uncertainty can be encountered through resourcefulness of employees or through organisational means
- This conceptualisation provides a different perspective for the analysis and design of production systems, by considering the impact of different types of complexity in construction projects.

THANK YOU! formoso@ufrgs.br dietz.viana@ufrgs.br

To be continued... SLACK IN CONSTRUCTION - PART 2: PRACTICAL APPLICATIONS LEAN THEORY 2 15:45-16:45 (Lima Time)