

Improving Street Reconstruction Projects in City Centers Through Collaborative Practices

Olli Seppänen, Rita Lavikka, Joonas Lehtovaara, Antti Peltokorpi

Introduction

- Renovation and relocation of underground utilities and renovation of streets cause harm to citizens
- Frequently delayed
- Uncertainty in conditions
- Public owners tend to use Design-Bid-Build
- Many stakeholders

AIM: Diagnose and construct a practical solution to street renovation projects to minimise delays and harm to citizens

RQ 1: What are the root causes of long durations of street reconstruction projects?

RQ 2: How to implement lean and digital tools to develop these projects?

Research Method

- Research strategy: design science research
 - 1. Diagnosis
 - 2. Formulation of a solution and validation
 - 3. Contributions and future research
- Extensive diagnosis with the support of City of Helsinki– "Common understanding of the problem"

Data for diagnosis

Data type	Data collection period	Analysed materials
Interviews	2/2019-6/2019	55 interview sessions with 75 participants (15 City of Helsinki, 23 contractors, 10 designers, 20 utilities, 7 others)
Document analysis	5/2019-6/2019	Three projects – contracts, schedules and their updates, meeting minutes, site diary
Site	11/2018-	Observations in four projects: situation
Observations	12/2018 and 5/2019-6/2019	picture, collaboration and trust, problems and their solutions
Survey	5/2019-6/2019	Survey related to communication in projects, conducted in one project, 29 respondents
Workshop	20.5.2019	33 participants (6 City of Helsinki, 6 contractors, 4 designers, 9 utilities, 7 others)

Diagnosis - Conflicting views from stakeholders

Stakeholder group	Main cause of street renovation project delays according to stakeholder group	
Contractor	 Imbalanced distribution of risks Coordination responsibility without commitment of all parties DBB model forces contractor to maximize utilization of resources City decision making slow – had to do changes at own risk 	
City of Helsinki	 Contractors don't plan work properly Contactors fail to justify change order requests Contractors reactive, not proactive 	
Utility companies	 Multi-project environment Individual scope is small, participating in every meeting is not efficient Lack of transparency to project schedules and continuous delays – hard to plan resources 	
Designers	 Last minute change requests Starting data for design inadequate (soil information, existing utilities) 	

Diagnosis – Observations and document study

- Lack of collaboration
- Shortcomings in schedules / planning not updated
- First time extension request destroys trust hostile environment
- Very slow handling of change order requests (months)
- "Surprises" on many days (19-66% of days in excavation phase)
 - Every "surprise" starts a change order process
- One project notably different
 - Similar contract but trust was achieved
 - Contractor was proactive at own risk and proposed solutions
 - Owner was happy and decided immediately paperwork later
 - Contract not followed!
 - The only project of four that finished on time and without dispute!

Consensus on root causes achieved

- 1. Contract form
 - Successful delivery only when contractual process was not followed
 - Design-Bid-Build NOT A GOOD FIT
- 2. Continuous deviations ("surprises")
 - Soil conditions, missing information, underground structures
- 3. Reacting to deviations and change management
 - Time and attention used on paperwork
- 4. Collaboration and trust
 - Reactive, not proactive. Documentation, not problem solving
- 5. Challenges related to schedules and logistics
 - Not enough time for planning. Lack of planning skills and resources
- 6. Lack of situational awareness for stakeholders
 - Several important parties are not on site at all times and need to know status of work

Model developed collaboratively based on three workshops in the workshop for lean construction of the contraction of the contra

Design

Preparation of Construction

Development phase

Construction

Participants: All entities managing design (City + utilities), design consultants, construction managers participate in the final phase of design

Objective / changes

 Construction managers (City + utilities) participate in evaluating constructability already in design phase

New tasks

- Defining risks and uncertainties already in design phase (collaboration of design managers and construction managers)
- More soil investigations (including test excavations) already in design phase in risky areas

Participants: All construction managers

Objective

 Selecting contractor with criteria which enables getting the right partner for development phase

Knowledge requirements of main contractor

- Planning skills
- Ability to recognize risks and opportunities
- · Ability to propose alternative solutions
- Ability to minimize the harm of construction to environment

Tasks

- Deciding the selection criteria of main contractor
 - Price component (lump sum / unit price)
 - Quality component (evaluation of skills <u>e.g.</u> by scoring the project plan in addition to customary references)
- Preparing of tender / contract documents
 - In call for tenders, constraints for planning and the risk analysis created in design phase should be appended

Participants: All design managers, construction managers, designers, main contractor, other contractors **Objective:**

 Preparation for construction phase so that both the duration and extent of harm to third parties can be minimized.

Tasks

- Collaborative planning of work and commitment to work plan
- Common risk analysis, pricing of risks and risk management plan
- Defining metrics for success and conditions of satisfaction
- Additional investigations of starting data in risky locations.
- Planning temporary traffic arrangements
- Alternative solutions and innovations
- Decision making paths and times for different types of deviations in construction phase
- Defining requirements for situation picture
- Target price and bonus scheme for construction phase

Participants: All construction managers, main contractor, other contractors. When changes occur, also design managers and design consultants.

Objective

- All actors have a real-time shared situation picture
- Flexible process when deviations occur by utilizing the risk analysis of development phase

Tasks

- · Continuous updates of schedule
- Real time situation picture for all stakeholders (main contractor procures the required systems).
- Quick decisions when there are deviations in cases when the deviation is related to a previously recognized risk.

Discussion of Design Science Research

- Detailed diagnosis resulted in common understanding of the problem and willingness to solve it
 - Long process with extensive evidence
- Convincing a public Owner to change their procurement from DBB was difficult
 evidence from diagnosis critical
- Although results are familiar to most lean researchers and practitioners, this
 research showed the power of DSR to achieve research-driven process change
- Three projects currently ongoing with the new process
 - Two went well, one had major difficulties
 - City is committed to continue

Conclusions

Answers to Research Questions:

RQ 1: What are the root causes of long durations of street reconstruction projects?

- High uncertainty
- Design-Bid-Build is too inflexible to deal with continuous change
- Better coordination required

RQ 2: How to implement lean and digital tools to develop these projects?

- New model developed with several lean elements
 - Collaborative development phase
 - More collaborative contract (target price with incentives associated with project objectives)
 - Collaborative planning with Last Planner System©
 - Digital situation awareness
- Interventions are not new but using DSR to kick off lean implementation was achieve real change

THANK YOU!

Olli Seppänen olli.seppanen@aalto.fi

