LEAN CONSTRUCTION PLANNING SUBJECT TO VARIATIONS IN DETAILED FEATURES OF FABRICATED BRIDGE GIRDERS

Badhon Das Shuvo Ming Lu

BRIDGE GIRDER FABRICATION

Challenges:

- bulky and heavy products
- alike in appearance, but unique structural component with special features
- multi-project simultaneous execution
- limited available skilled trades

complexity and uncertainty

PROBLEM STATEMENT

- Scheduling is done by a PMP certified P6 user (Spencer) and production planning by a shop manager (Chris)
- Spencer and Chris are both overwhelmingly busy; seldom have chances to communicate
- Now, Spencer needs to get inputs from the shop operations about production capacity (crew size, shop layout, productivity), sequence, girder lead time in shop, girder-to-girder loading time lag

PROBLEM STATEMENT (contd.)

Many inputs are uncertain variables, they keep changing

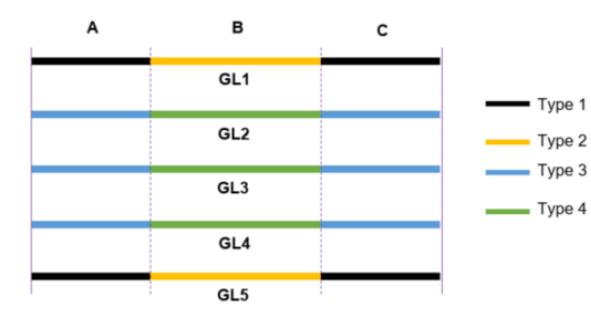
Chris has his gut feelings, but It is difficult for him to give crisp clear answers to Spencer

RESEARCH'S GOAL

To develop a valid virtual plant (i.e. simulation model)

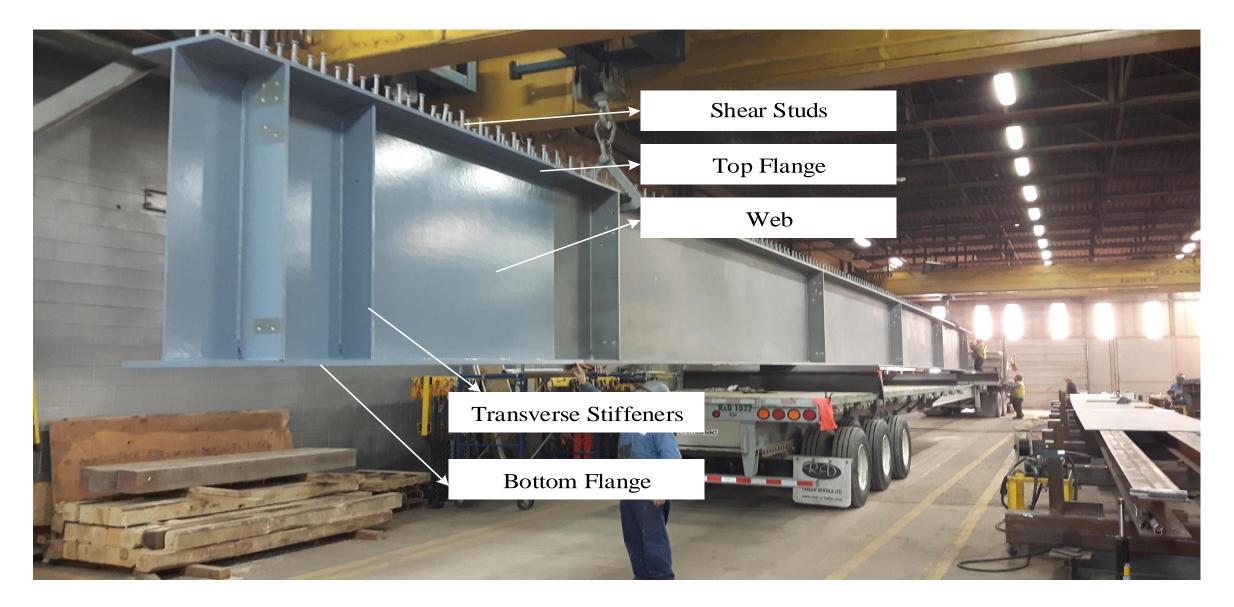
which will be

- at the figure tips of Spencer and Chris
- accounting for sufficient details and fully validated
- adaptive, flexible to the rapid changing situations
- user friendly to both



CASE STUDY

CLASSIFICATION OF GIRDERS

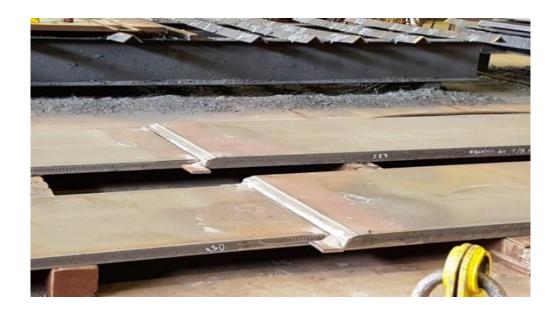

Type of Girder	Type 1	Type 2	Туре 3	Type 4
Girders	GL1A, GL1C, GL5A, GL5C	GL1B, GL5B	GL2A, GL2C, GL3A, GL3C, GL4A, GL4C	GL2B, GL3B, GL4B
Symbol	\bigcirc		\bigtriangleup	\bigtriangledown

DESIGN VARIATIONS

- Length of the girder
- Number of field splice
- Stiffener Complexity

Girder Shape Complexity

GIRDER



DESIGN VARIATIONS

- Length of the flanges
- Width of the flanges
- Thickness of the flanges
- Number of drills in one end
- Number of flange splices

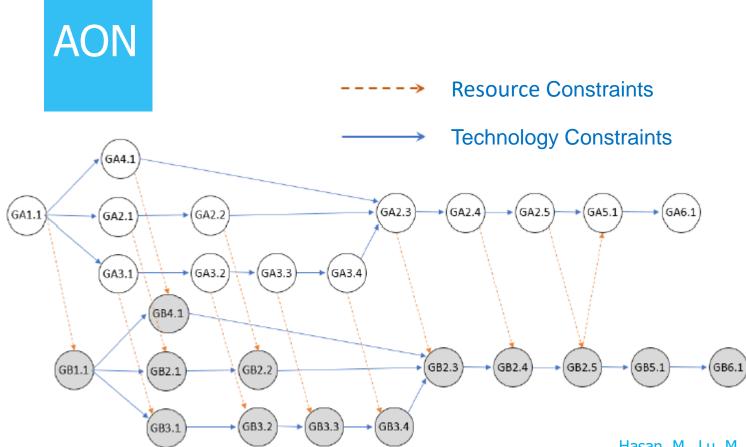
FLANGE

DESIGN VARIATIONS

- Length of the web plate
- Number of the web plates
- Width of the web plates
- Thickness of the web plates

FABRICATION OPERATION

(1) Receiving plates (2) Flanges preparation (3) Web preparation (4) Stiffener preparation (5) Assembling girder by fitting & welding flanges to web (6) Stiffener fitting & welding (7) Studding (8) Field splicing (9) Sandblasting & Finishing

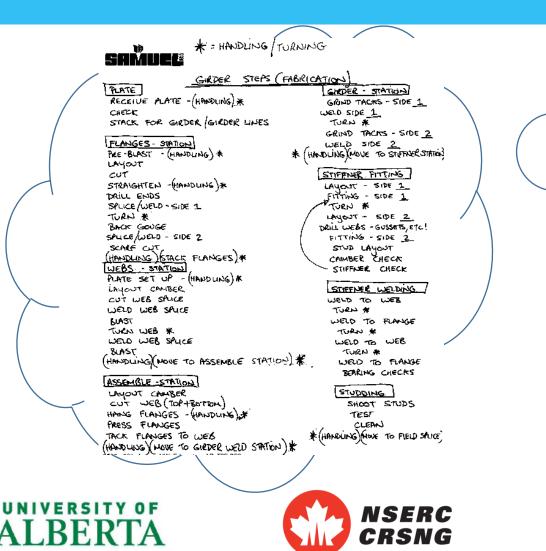


MESSY

EXPLODES IN SIZE AND COMPLEXITY (due to repetitive units)

NOT ADAPTIVE TO CONSTANT CHANGES

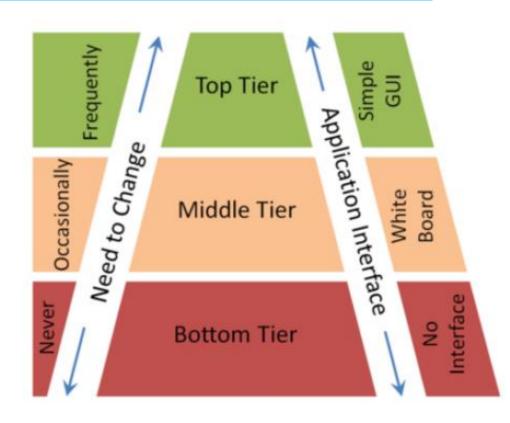
Hasan, M., Lu, M., and Bird, K. 2019. "Planning and Scheduling Bridge Girders Fabrication Through Shopfloor Operations Simulation". In *Proceedings of the 2019 European Conference on Computing in Construction*, July 10-12, 2019, Chania, Crete, Greece, 75–84.



Eliciting knowhow on production processes

R LEAN CONSTRUCTION

Hasan, M., Lu, M., and Ritcey, C. 2019. "Simulation Based Approach to
Systematic Project Planning and Scheduling at a Bridge Fabrication Shop" In *Proceedings of the 2019 Winter Simulation Conference (WSC)*, National Harbor,
MD, USA, 2019, pp. 3019-3030, DOI: 10.1109/WSC40007.2019.9004918.


NSERC CRSNG

SUPREME

GROUP

THREE-TIER SIMULATION FRAMEWORK (SDESA)

Lu, M., Hasan, M., and Mohsenijam, A. 2019. "Three-Tiered Simulation Framework for Modeling Bridge Girders Fabrication Processes in a Steel Fabrication Shop". In *Proceedings of the 2019 Computing in Civil Engineering Conference*, 17 – 19 June, 2019, Atlanta, Georgia:553–560.

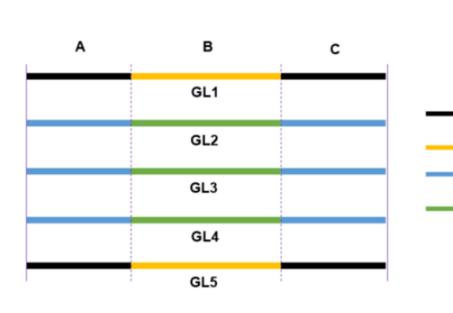
- Schedules time events as per the logic and constraints defined in the middle tier and the top tier.
- Provides the analytical power of simulation analysis.

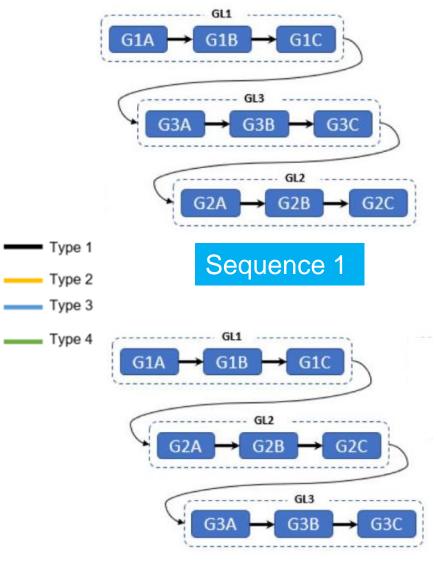
 Brings each piece, each step, each resource, and each time-dependent logical constraint into order along the timeline of simulation.

- Plots flowchart-based network models which sufficiently represent resource flows and work flows.
- Adaptable to the changes in processing logic, time and resource requirements based on girder features.
- Changes entail when shop updates technology and layout.

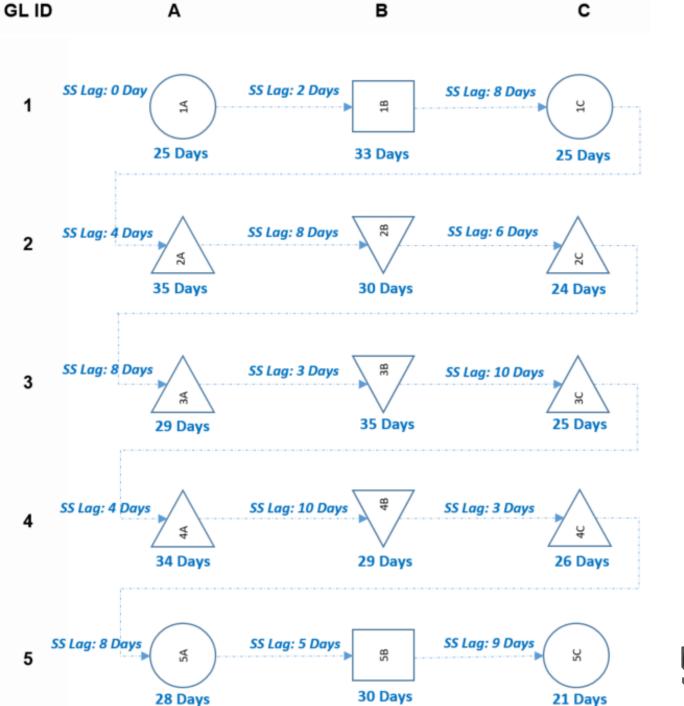
TOP TIER

- Simple interfaces with shop manager who defines raw material specifications, engineering design attributes and sequences of processing, resources available.
- No prior knowledge in simulation modeling is required except basic knowhow and limited experience in planning girder fabrication.


NEED TO CHANGE FREQUENTLY



EASY TO CHANGE THE FABRICATION SEQUENCE



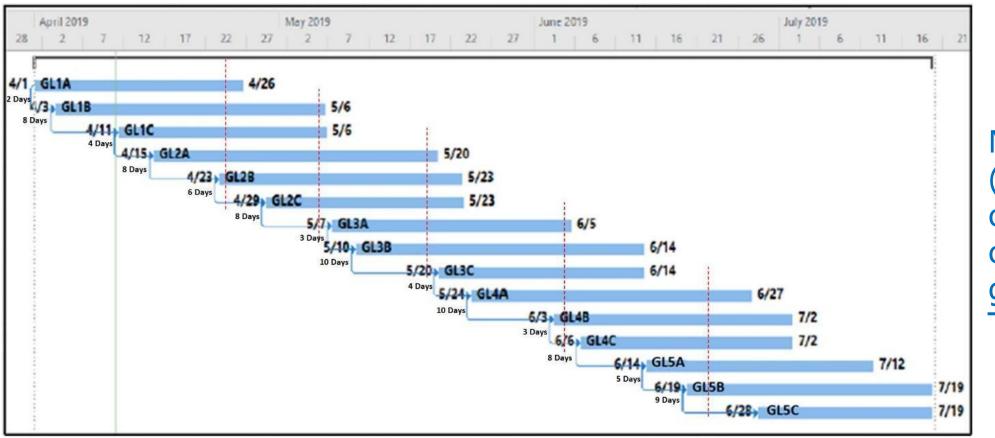
Shop Fabrication Plan (Girder by Girder)

Girder Type	Girder ID	Start (D-M)	Finish (D-M)	Duration (Days)
0	1A	01-Apr	26-Apr	25
	1C	11-Apr	06-May	25
	5A	14-Jun	12-Jul	28
	5C	28-Jun	19-Jul	21
	1B	03-Apr	06-May	33
	5B	19-Jun	19-Jul	30
Δ	2A	15-Apr	20-May	35
	2C	29-Apr	23-May	24
	ЗA	07-May	05-Jun	29
	3C	20-May	14-Jun	25
	4A	24-May	27-Jun	34
	4C	06-Jun	02-Jul	26
∇	2B	23-Apr	23-May	30
	3B	10-May	14-Jun	35
	4B	03-Jun	02-Jul	29

Start and finish fabrication time of each girder

SS lag times (days) between two different types of girders

Girder Type Combination	Remarks	Instances	Lag Time (Days)
	Type 1 girder presedes Type 2 girder with SS log time	1A-1B	2
	Type 1 girder precedes Type 2 girder with SS lag time	5A-5B	5
	Type 2 girder presedes Type 1 girder with CC leg time	2B-2C	8
	Type 2 girder precedes Type 1 girder with SS lag time	5B-5C	9
0→∆	Type 1 girder precedes Type 3 girder with SS lag time	1C-2A	4
∕⊸	Type 3 girder precedes Type 4 girder with SS lag time	2A-2B	8
		3A-3B	3
		4A-4B	10
	Type 3 girder precedes another Type 3 girder with SS lag	2C-3A	8
	time	3C-4A	4
	Type 4 girder precedes Type 3 girder with SS lag time	2B-2C	6
		3B-3C	10
		4B-4C	3
A→O	Type 3 girder precedes Type 1 girder with SS lag time	4C-5A	8



DECISION SUPPORT FOR PROJECT MANAGEMENT

Multiple girders (maximum 5 girders) can be processed concurrently at any given moment

CONCLUSION

- Presented a simulation case of planning bridge girder fabrication to illuminate on *mura* inherent in girder fabrication;
- Elaborated the variations in girder fabrication time and inter-girder lag in the context of applying lean concepts for planning in practice;
- Explored a new lean approach (SDESA) to project planning and scheduling assisted with production operations planning by simulation;
- SDESA provides the platform to validate proposed framework and prototype solution, leading to a highly predictable, more productive, and leaner system of bridge girder fabrication and installation.

26

Related Work on Simulation Modeling

- Hasan, M., Lu, M., and Bird, K. 2019. "Planning and Scheduling Bridge Girders Fabrication Through Shopfloor Operations Simulation". In *Proceedings of the 2019 European Conference on Computing in Construction*, July 10-12, 2019, Chania, Crete, Greece, 75–84.
- Hasan, M., Lu, M., and Ritcey, C. 2019. "Simulation Based Approach to Systematic Project Planning and Scheduling at a Bridge Fabrication Shop" In *Proceedings of the 2019 Winter Simulation Conference* (WSC), National Harbor, MD, USA, 2019, pp. 3019-3030, DOI: 10.1109/WSC40007.2019.9004918.
- Lu, M., Hasan, M., and Mohsenijam, A. 2019. "Three-Tiered Simulation Framework for Modeling Bridge Girders Fabrication Processes in a Steel Fabrication Shop". In *Proceedings of the 2019 Computing in Civil Engineering Conference*, 17 – 19 June, 2019, Atlanta, Georgia:553–560.

ACKNOWLEDGEMENT

Kevin Guile Chief Operations Officer

Ken Bird Director (Fabrication)

Chris Ritcey Plant Manager (Bridge)

David Fritz Operations Manager

Ming Lu Professor, Construction Engineering & Management University of Alberta

THANK YOU

badhonda@ualbarta.ca

