

THE INFLUENCE OF THE BUILT ENVIRONMENT ON PATIENT SAFETY AND WELL-BEING: A FUNCTIONAL PERSPECTIVE

Natália Ransolin | Tarcísio Abreu Saurin | Carlos Torres Formoso

BACKGROUND

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

• Built environment (BE) requirements have been defined as building attributes - components, utilities, and spaces - that should be in place so that the BE fulfill the needs of end users – patients, visitors, workers

- High abstraction level: patient safety and well-being (Lucas et al., 2012);
- Evidence Based Design (EBD): decision-making supported on evidence available in the literature (Ulrich et al., 2008; Rybkowski, 2009)
 - Some BE conditions | noise, light, privacy, comfort, access to the external environment, and accessibility (Ulrich et al., 2008; Rybkowski, 2009; Hicks et al., 2015)

- BE design decisions that benefit patient safety and well-being.
 - value generation | customer viewpoint patient and flow of activities healthcare services (Koskela, 2000).

IGLC 28 BERKELEY, CA 6-12 JULY 2020

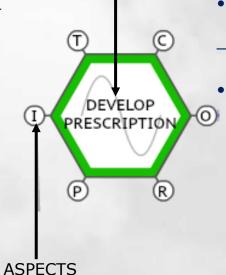
BACKGROUND

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

- The analysis of how a system functions should emphasize work-as-done (WAD) (Hollnagel, 2012): ----- EBD
 - However, BE design WAI | conflict with the dynamic nature of healthcare (Hollnagel et al., 2014): WAD x WAI

- The Functional Resonance Analysis Method (FRAM) Hollnagel (2012):
- Understanding variability propagation and accounting for the complexity of projects
 - Modelling interactions between BE and patient safety and well-being in an adult Intensive Care Unit (ICU);

BACKGROUND


- 28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION
- Part of a **broader research** project carried out at the same ICU, in which a **framework for the integrated modelling of BE** and other functional requirements was applied (**Ransolin et al., 2020**).
 - Combined use of FRAM and Building Information Modelling (BIM) for requirements management.

	Applied Ergonomics 88 (2020) 103154	
	Contents lists available at ScienceDirect	Applied Ergonomics
22	Applied Ergonomics	Human Factors in Technology and Society
ELSEVIER	journal homepage: http://www.elsevier.com/locate/apergo	Television and the Conversion of the American Statement State
Integrated modelling of built environment and functional requirements:		Check for updates
Implications for	resilience	
Natália Ransolin ^a , Ta	arcisio Abreu Saurin ^{*, b} , Carlos Torres Formoso ^a	
90035-190, Brazil	rastructure Post-Graduation Program, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99, Porto Alegre, RS, CEP	
- industrial Engineering and Transpo	rtation Department, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99, Porto Alegre, RS, CEP 90035-190, Brazil	

PRINCIPLES OF FRAM

- A **FRAM** model consists of **interconnected functions**, their corresponding **variabilities**, and **couplings** between functions. Description of the functions according to **six aspects** (Hollnagel, 2012):
- Input (I) | what starts the function / processes ;
- Output (O) | result entity or a state change;
 Preconditions (P) | conditions that must be exist
 before a function can be carried out BE
 requirements (Ransolin et al., 2020);

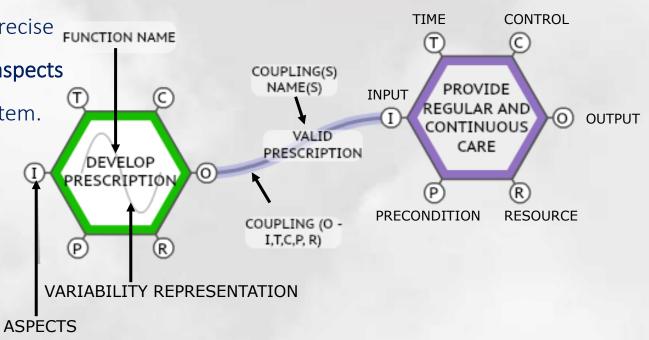
FUNCTION NAME

Resources (R) | what a function consumes

to produce the output;

- Time (T) | temporal constraints
- starting/finishing time or duration;
- Control (C) | how the function is monitored or controlled.

PRINCIPLES OF FRAM

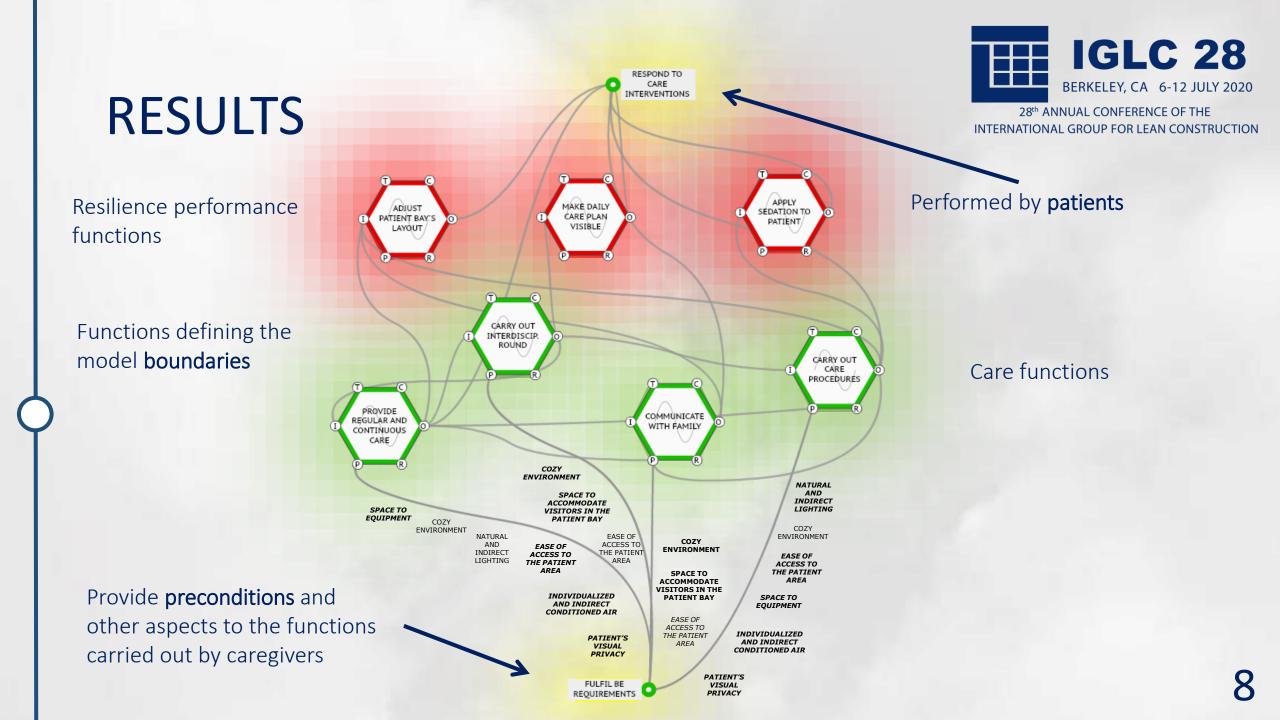

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

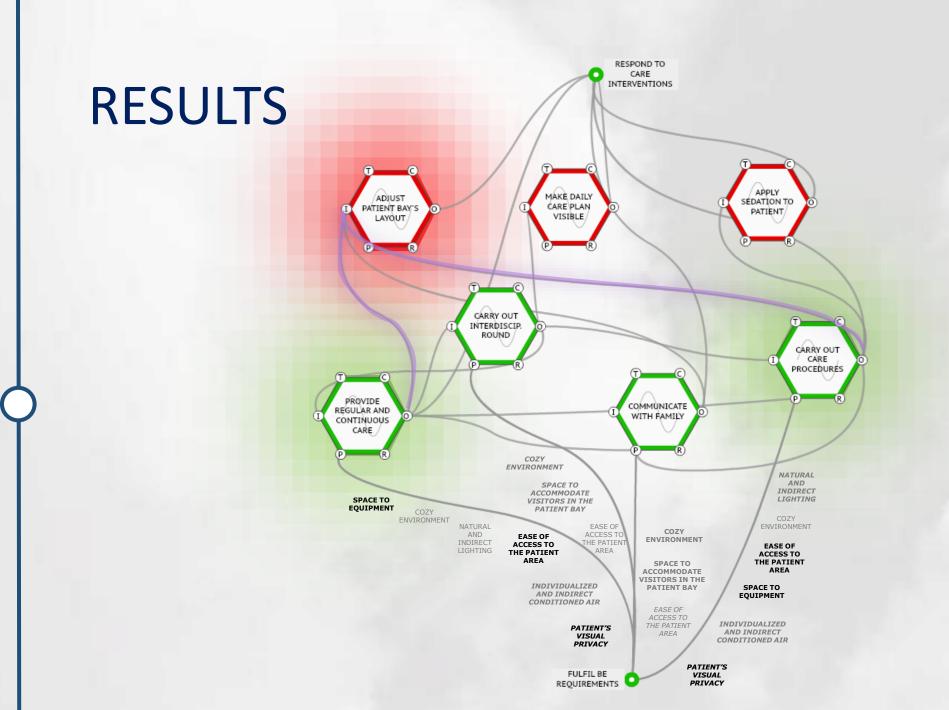
- A **FRAM** model consists of **interconnected functions**, their corresponding **variabilities**, and **couplings** between functions. Description of the functions according to **six aspects** (Hollnagel, 2012):
- Variability |Time too early, on-time, too late, or not at all

Precision imprecise, acceptable, or precise

 Couplings | outputs are connected to the other aspects variability propagation across the system.

Functional resonance | manifestation of the **unintended interaction** of the normal variability of each function.




ASSUMPTIONS

- 28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION
- A FRAM model consists of interconnected functions, their corresponding variabilities, and couplings between
 - functions. Description of the functions according to **six aspects** (Hollnagel, 2012):
 - Variability by unfulfilled BE requirements. It propagates across the system through functions -caregivers and patients;

• BE impact on patient safety and well-being are moderated by the functions carried in the workspace;

 Functional resonance | manifestation of the unintended interaction of the normal variability of each function.

9

10

DISCUSSION AND CONCLUSIONS

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

- Variability in fulfilling BE requirements propagates across space and time through everyday functions of caregivers, hindering patient safety and well-being.
 - Understanding how employees cope with unfulfilled BE requirements: displaying resilient performance;
- Resilience may imply in the creation of new functions, hence increasing opportunities for unwanted interactions;

- Traditional BE design management practices usually disregard WAD and its variability.
- Strengthen the **EBD** literature by acknowledging that **variability** is to some extent unavoidable in healthcare;
- Value generation | supporting the fulfillment of BE requirements that impact patient safety and well-being.

REFERENCES

- Anvisa Agência Nacional de Vigilância Sanitária (National Health Surveillance Agency). 2010.
 Resolução de Diretoria Colegiada (Collegiate Board Resolution) RDC N.7. Brazil.
- Chaudhury, H., Mahmood, A., & Valente, M. 2009. "The effect of environmental design on reducing nursing errors and increasing efficiency in acute care settings: A review and analysis of the literature." *Environment and Behavior, 41(6), 755-786.*
- Hendrick, H. W., & Kleiner, B. M. 2001. "Macroergonomics: An introduction to work system design". Human Factors and Ergonomics Society.
- Hicks, C., McGovern, T., Prior, G., & Smith, I. 2015. "Applying lean principles to the design of healthcare facilities." *International Journal of Production Economics*, *170*, 677-686.
- Hollnagel, E. 2012. FRAM: the Functional Resonance Analysis Method: Modeling complex sociotechnical systems. Ashgate, Burlington.
- Hollnagel, E.; Hounsgaard, J.; Colligan, L. 2014. FRAM The Functional Resonance Analysis Method a handbook for the practical use of the method. Centre for Quality, Region of Southern Denmark.
- Intensive Care Society. 2016. Guidelines for the provision of intensive care services. https://www.ficm.ac.uk/sites/default/files/gpics_ed.1.1_-2016_-final_with_covers.pdf (Mar 20, 2020).
- Kamara, J. M., Anumba, C. J., & Evbuomwan, N. F. 1999. "Client requirements processing in construction: a new approach using QFD." *Journal of architectural engineering*, 5(1), 8-15.
- Kim, T.W, Fischer, M. 2014. "Ontology for representing building users activities in space-use analysis." Journal of Construction Engineering and Management, 140(8), 04014035.
- Kim, T. W., Kim, Y., Cha, S. H., & Fischer, M. 2015. "Automated updating of space design requirements connecting user activities and space types." Automation in Construction, 50, 102-110.
- Koskela, L. 2000. An exploration towards a production theory and its application to construction. VTT Technical Research Centre of Finland.

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

- La Calle, G. H., Martin, M. C., & Nin, N. 2017. "Seeking to humanize intensive care." *Revista Brasileira de terapia intensiva*, 29(1), 9-13.
- Lucas, J. D. 2012. "An integrated BIM framework to support facility management in healthcare environments." *Doctoral dissertation, Virginia Tech.*
- Pickup, L., Lang, A., Atkinson, S., & Sharples, S. 2018. "The dichotomy of the application of a systems approach in UK healthcare the challenges and priorities for implementation." *Ergonomics*, *61*(1), 15-25.
- Ransolin, N., Saurin, T. A., Formoso, C. T. 2020. "Integrated modelling of built environment and functional requirements: implications for resilience." *Applied Ergonomics, 88, 103154*.
- Rashid, M. 2010. "Environmental design for patient families in intensive care units." Journal of Healthcare Engineering, 1(3), 367-398.
- Rosso, C. B., & Saurin, T. A. 2018. "The joint use of resilience engineering and lean production for work system design: A study in healthcare." *Applied Ergonomics, 71, 45-56.*
- Rybkowski, Z. K. 2009. "The application of root cause analysis and target value design to evidence-based design in the capital planning of healthcare facilities." *Doctoral Dissertation, University of California, Berkeley.*
- Saurin, T.A. 2016. "The FRAM as a Tool for Modelling Variability Propagation in Lean Construction." *In: 24th Annual Conference of the International Group for Lean Construction, 2016, Boston, USA. 2016. v. 2. p. 3-12.*
- Tzortzopoulos, P., Codinhoto, R., Kagioglou, M., Rooke, J. A., & Koskela, L. J. 2009. "The gaps between healthcare service and building design: a state of the art review." *Ambiente Construído, 9(2), 47-55.*
- Ulrich, R. S., Zimring, C., Zhu, X., DuBose, J., Seo, H. B., Choi, Y. S., & Joseph, A. 2008. "A review of the research literature on evidence-based healthcare design." *Health Environments Research & Design Journal*, *1*, 61–125.
- Zhang, Y., Tzortzopoulos, P., & Kagioglou, M. 2016. "Evidence-based design in healthcare: A lean perspective with an emphasis on value generation." In Proceedings of the 24th Annual Conference of the International Group for Lean Construction (IGLC), Boston, MA, USA. v.1. p. 20-22.
- Zhang, Y., Tzortzopoulos, P & Kagioglou, M. 2017. "How evidence-based design supports better value generation for end-users." In: Proceedings of the 25th Annual Conference of the International Group for Lean Construction, 9th-12th July 2017, Heraklion, Greece. v.1. p. 579-586.

THANK YOU!

THE INFLUENCE OF THE BUILT ENVIRONMENT ON PATIENT SAFETY AND WELL-BEING: A FUNCTIONAL PERSPECTIVE

Natália Ransolin | natalia.ransolin@ufrgs.br

Tarcísio Abreu Saurin | <u>saurin@ufrgs.br</u>

Carlos Torres Formoso | formoso@ufrgs.br

