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ABSTRACT 

Projects are finite terminating endeavors with distinctive outcomes, usually, occurring 

under transient conditions. Nevertheless, most estimation, planning, and scheduling 

approaches overlook the dynamics of project-based systems in construction. These 

approaches underestimate the influence of process repetitiveness, the variation of 

learning curves and the conservation of processes’ properties. So far, estimation and 

modeling approaches have enabled a comprehensive understanding of repetitive 

processes in projects at steady-state. However, there has been little research to 

understand and develop an integrated and explicit representation of the dynamics of 

these processes in either transient, steady or unsteady conditions. This study evaluates 

the transfer function in its capability of simultaneously identifying and representing 

the production behavior of repetitive processes in different state conditions. The 

sample data for this research comes from the construction of an offshore oil well and 

describes the performance of a particular process by considering the inputs necessary 

to produce the outputs. The result is a concise mathematical model that satisfactorily 

reproduces the process’ behavior. Identifying suitable modeling methods, which 

accurately represent the dynamic conditions of production in repetitive processes, 

may provide more robust means to plan and control construction projects based on a 

mathematically driven production theory. 

KEYWORDS 

Production, process, system identification, transfer function, system model, theory; 

INTRODUCTION 

Construction management practices often lack the appropriate level of ability to 

handle uncertainty and complexity (McCray and Purvis, 2002; Abdelhamid, 2004) 

involved in project-based systems resulting in projects failures in terms of projects 

schedule and budget performance, among other measures (Mills, 2001). Traditional 

scheduling approaches in construction, such as critical path method, have been 
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unrestrictedly used producing unfinished and erratic plans (Abdelhamid, 2004; 

Bertelsen, 2003a) consequently creating distrust, and often being abandoned by those 

conducting project work. Even more recent scheduling approaches, such as the ones 

based on the line-of-balance method, assume that the production in construction 

operates at steady-state with constant production rates (Lumsden, 1968; Arditi, et al., 

2001), where any deviation is understood as variability (Poshdar, et al., 2014). 

However, “the assumption that production rates of construction projects and 

processes are linear may be erroneous” (Lutz and Hijazi, 1993). Production 

throughput is highly variable in construction projects (Gonzalez, Alarcon and 

Molenaar, 2009), has transients (Lutz and Hijazi, 1993), occasionally is at unsteady-

state (Bernold, 1989; Walsh, et al., 2007) and frequently is nonlinear (Bertelsen, 

2003b). As such, approaches that depend on constant production rates, i.e., a steady 

system, possibly produce erroneous and imprecise outcomes. 

The dynamics of the production system in construction is frequently overlooked 

(Bertelsen, 2003b), and the transient phase is ignored (Lutz and Hijazi, 1993). The 

general construction management makes no distinction between the production 

dynamics and disturbance, considering both as variability (Poshdar, et al., 2014). 

However, dynamics, disturbance, and variability have different meanings and action 

approaches. The dynamics is an essential characteristic of any process, representing 

the effects of the interaction of components in a system. Process dynamics should be 

understood, managed and optimized. External factors cause disturbance, which must 

be filtered, mitigated and avoided consequently reducing any impact on the process, 

e.g., risk management (Antunes and Gonzalez, 2015). The understanding of these 

concepts is fundamental to the development of mathematical relations and laws 

suitable to the construction production system. At this time, construction adopts the 

manufacturing model, dismissing the application of mathematical approaches to 

model and manage its production system (Laufer, 1997; McCray and Purvis, 2002; 

Bertelsen, 2003a). 

Although much work has been done to date on production estimates of repetitive 

processes, more studies need to be conducted to understand and develop the dynamics 

of these processes. The purpose of this study is to evaluate the transfer function in its 

capability of identifying and describing the dynamics of project-driven systems in 

repetitive processes in construction. This topic was identified as being of importance 

to point out a unique mathematical representation of project-based systems process in 

transient, unsteady-, and steady-state, furthermore, overcoming a major limitation of 

fixed production rates estimation approaches. The understanding of project dynamics 

should improve estimation accuracy approaches and support suitable derivations of 

manufacturing management practices in order to increase productivity in construction 

projects. This study is a step towards the development of a mathematically driven 

production theory for construction. 

A SYSTEM VIEW 

Mathematical models have enabled a comprehensive understanding of production 

mechanisms supporting practices to improve production in manufacturing. Hopp and 

Spearman (1996) committed to the comprehension of the manufacturing production 

system. The system approach or system analysis was the problem-solving 

methodology of choice (Hopp and Spearman, 1996). The first step of this 
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methodology is a system view. In the system view, the problem is observed as a 

system established by a set of subsystems that interact with each other. Using the 

system approach, Hopp and Spearman elaborated significant laws to queue systems 

and the general production in manufacturing. The conservation of material and 

capacity laws (Hopp and Spearman, 1996) are particularly attractive, not only 

according to their importance, but also because they explicitly state one or more 

system restrictions. These laws place reliance on stable systems, with long runs and at 

steady-state conditions. However, production in project-based systems, such as 

construction, involves a mix of processes in steady- and unsteady-state, short and 

long production runs, and different learning curves (Antunes and Gonzalez, 2015). 

Hence, unless a construction process fulfills the stability and steady-state conditions, 

the manufacturing model and, consequently, the laws do not accurately represent 

production in construction. Alternatively, variants of manufacturing laws must be 

developed to production in project-based systems that not fulfill those requirements. 

In this scenario of variety, it is crucial distinguishing between project-based systems 

conditions, comprehending process dynamics and its behavior. 

SYSTEM IDENTIFICATION 

The objective of system identification is to build mathematical models of dynamic 

systems using measured data from a system (Ljung, 1998). There are several system 

identification approaches to model different systems, for instance, transfer function. 

The transfer function is particularly useful because it provides an algebraic 

description of a system as well means to calculate parameters of the system dynamics 

and stability. Nevertheless, the modeling capability of the transfer function in 

construction must be evaluated and tested. In this study, the modeling approach, i.e., 

transfer function, focuses on replicating the input/output “mapping” observed in a 

sample data. When the primary goal is the most accurate replication of data, 

regardless of the mathematical model structure, a black-box modeling approach is 

useful. Additionally, black-box modeling supports a variety of models (Bapat, 2011; 

Billings, 2013), which have traditionally been practical for representing dynamic 

systems. It means that at the end of the modeling, a mathematical description 

represents the actual process performance rather than a structure biased by 

assumptions and restrictions. Black-box modeling is a trial-and-error method, where 

parameters of various models are estimated, and the output from those models is 

compared to the results with the opportunity for further refinement. The resulting 

models vary in complexity depending on the flexibility needed to account for both the 

dynamics and any disturbance in the data. The transfer function is used in order to 

show the system dynamics explicitly. 

TRANSFER FUNCTION 

The transfer function of a system, G, is a transformation from an input function into 

an output function, capable of describing an output (or multiple outputs) by an input 

(or multiple inputs) change, y(t) = G(t)⋆u(t). Although generic, the application of the 

transfer function concept is restricted to systems that are represented by ordinary 

differential equations (Mandal, 2006). Ordinary differential equations can represent 

most dynamic systems in its entirety or at least in determined operational regions 

producing accurate results (Altmannand Macdonald, 2005; Mandal, 2006). As a 
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consequence, the transfer function modeling is extensively applied in the analysis and 

design of systems (Ogata, 2010). A generic transfer function makes possible 

representing the system dynamics by algebraic equations in the frequency domain, s. 

In the frequency domain, the convolution operation transforms into an algebraic 

multiplication in s, which is simpler to manipulate. Mathematically, “the transfer 

function of a linear system is defined as the ratio of the Laplace transform of the 

output, y(t), to the Laplace transform of the input, u(t), under the assumption that all 

initial conditions are zero” (Mandal, 2006), Equation 1. Where the highest power of s 

in the denominator of the transfer function is equal to n, the system is called anth-

order system. 

 

Equation 1: Transfer function 

TRANSIENT STATE, STEADY-STATE, AND UNSTEADY-STATE RESPONSE 

Two parts compose a system response in the time domain, transient, and steady- or 

unsteady-state. Transient is the immediate system response to an input from an 

equilibrium state. After the transient state, a system response can assume a steady- or 

unsteady-state. In a stable system, the output tends to a constant value when t→∞ 

(Mandal, 2006). When the system response enters and stays in the threshold around 

the constant value the system reached the steady-state (Mandal, 2006). The time the 

stable system takes to reach the steady-state is the settling time, ts. On the other hand, 

if the response never reaches a final value or oscillates surpassing the threshold when 

t→∞ the system is then at unsteady-state. Consequently, the system outputs at 

unsteady-state vary with time during the on-time interval even induced by an 

invariable input. 

METHODOLOGY 

A sample of 395 meters of continuous drilling was randomly selected from the 

project of an offshore oil well construction, constituting the process to be modeled. 

The information containing the drill ahead goal and the current process duration was 

collected from operational reports and resampled to 181 samples representing the 

hourly process behavior when commanded by the input, establishing a system. Next, 

the estimation of a transfer function was used for the determination of a model that 

represents the dynamics of the system-based process. The estimation uses nine 

partitions of the dataset creating models based on different data sizes. The best model 

from each of the nine partitions presenting the lowest estimation unfitness value were 

selected and cross-validated by the remaining data. Later, the system response of the 

best model was analyzed. 

CASE STUDY: DRILLING AS A SYSTEM 

The subject of this study is the drilling process on a particular offshore well 

construction project in Brazilian pre-salt. This process was chosen given its high level 

of repetitiveness. The vertical dimension of repetitiveness is the repetition of the 

process in the project, i.e., the drilling occurs more than one time in the construction 

of a well. The horizontal dimension is the repetition of the process in different 
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projects, i.e., the drilling occurs on every well construction project. Such degree of 

repetitiveness eases comparison and data validation because a repetitive process tends 

to present patterns in smaller data portions. The case documentation provides details 

about inputs, outputs and brief explanations of the process parameters. Nonetheless, 

the documentation does not include any mathematical representation of the processes 

other than the drilling parameters and other activities performed while drilling, which 

constitute subsystems. For instance, the work instructions to drill a segment of 28 

meters on seabed:  

 Drill ahead 8 1/2" hole from 3684 m to 3712 m with 480 gpm, 1850 psi, 15-

25k WOB, 120 rpm, 15-20 kft.lbs torq. Perform surveys and downlinks as per 

directional driller instructions. Pump 15 bbl fine pill and 50 bbl hi-vis pill 

every two stand as per mud engineer instructions.  

The primary input, ‘drill ahead from 3684 m to 3712 m’, and the parameters, such as 

torque and rpm, directly affect the drilling process. However, the system view unifies 

the different parts of the system, i.e., the subsystems, into an effectual unit using a 

holistic perspective. The holistic perspective allows the creation of a system driven by 

a primary input while all others variables interact as subsystems of the main system. 

To fully establish a system, an input has to be applied to the process in order 

produce an output. Accordingly, the input, u(t), consists of a drilling ahead depth 

goal, e.g., 3712 meters, that is applied to the drilling process, producing the output, 

y(t), that is the actual depth, in meters. In the process, G(t), the drilling crew responds 

to the drilling ahead goal by drilling and performing related tasks, which increases the 

actual well depth over time until reaching the drilling depth goal. Then, a new drill 

ahead goal is set, and the process performs the cycle. The sample data corresponds 

with a well depth increase from 3305 to 3700 meters at a variable rate based on 

operational choices. The 181 samples represent the hourly input and process behavior 

response, i.e., output. The input and output data are cumulative due to physical 

restrictions. In other words, it is impossible to drill from 3435 meters without prior 

drilling from the seabed at 924 meters from water level to 3435 meters in the hole. 

Consequently the drill ahead goal as well as the actual depth values are always greater 

than the previous values. Figure 1 displays the general system representation of the 

process with its measured input and output, drill ahead goal and actual depth 

respectively. Two criteria guided the choice of drilling goal as input. The first 

criterion is that the drill ahead goal is the primarily directive to achieve the objective 

of the project, setting the peace to build the well. The drill ahead goal is an adaptive 

plan in which the team has to examine the current conditions of the well and 

determine the best drill ahead goal. It relies on guidelines and procedures but in the 

end its a human decision. The second criterionis that this particular arrangement 

illustrates the number of items arriving in a queuing system at time t. Additionally, 

the output represents the number of items departing in the queuing system at time t. 

Such input-output arrangement is instrumental to adapt manufacturing-based models 

such as the Little’s Law (Little, 1961) to construction in further research. 
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Figure 1. System representation of the case study 

INITIAL MODELING APPROACH 

A simple model is attempted initially before progressing to more complex structures 

until reaching the required model accuracy. Simpler models are easier to interpret, a 

desired feature in this study. However, if that model unsatisfactorily simulates the 

measured data, it may be necessary to use more complex models. The simpler system 

identification approach is the transfer function. Hence, transfer function might be a 

good starting point in order to identify, model and understand the behavior of a 

system. The sample data was partitioned in nine combinations representing nine 

stages in time, as shown in Figure 1. The first partition is at the 20th hour. Therefore, 

the data from zero to 20 hours was used as estimation data for G1, and from 21 to 181 

hours as the validation data. The second partition happens at 40 hours mark. In the 

same way, the estimation for G2 is composed of the data from zero to 40 hours mark, 

and the validation is from the 41st to the 181st hour. This pattern repeats until the 

180-time stamp. At this partition, almost the whole sample constitutes the estimation 

data, and only one sample is left for validation of G9. The model from this partition, 

G9, merely fits the estimation data once there is virtually no data that could be used to 

validate the model. Based on black-box trial-and-error approach, the model 

parameters of the transfer function of first-order (Ogata, 2010) were generated for 

each partition using the iterative prediction-error minimization algorithm (Ljung, 

2010) from MATLAB’s System Identification Toolbox. A first-order transfer 

function eases the model interpretability. 

MODEL DEVELOPMENT 

Three transfer functions, which showed the lowest unfitness values, calculated by 

100% – normalized root mean square (NRMSE) (Armstrong and Collopy, 1992; 

Ljung, 2010), were selected for each of the nine data partitions, constituting the best 

models. A perfect fit corresponds to zero meaning that the simulated or predicted 

model output is exactly the same as the measured data.  

MODEL QUALITY ASSESSMENT 

The initial models were later refined using the prediction-error minimization 

algorithm (Ljung, 1998). After refinement, the models that achieved the lowest 

unfitness values to each estimation data partition that they derived from were then 

validated using the remaining data of their partition. Figure 2 shows the quality 

measurements of the best models for each partition. The quality measurements are the 

percentage of validation and estimation data unfitness, Akaike's Final Prediction 

Error (FPE) (Jones, 1975), loss function (Berger, 1985) and mean squared normalized 

error performance function (MSE) (Poli and Cirillo, 1993). The quality measurements 
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are represented in the graph by ‘Val unfit’, ‘Est unfit’, FPE, ‘Loss Fcn’, and MSE 

respectively. Although, the model choice in this study is not mathematically based on 

FPE, loss function and MSE their values were calculated and shown providing an 

extra measurement of model quality. A variety of measurements is useful for 

comparing different models as well as comparing the models with different modeling 

approaches. Differently from the models one to seven, the models for the segments 

eight and nine present high unfit levels to their validation segments, 72,64% and 

impossible to calculate, respectively. For G8, the input-output relation of the 

validation data, shown in the segment eight to nine in Figure 2, is extremely distinct 

from the data used in the estimation, segment one to eight. For G9, there is only one 

sample remaining to validate the model. Hence, the model 

G9(s) = 0.6646 / (s + 0.6687) corresponds to the structure that better reproduces the 

sample data with about 93% fitness. Accordingly, G9 is used later to demonstrated the 

step response. 

 

Figure 2. Quality comparison of the models 

Despite the model G9 has the lowest unfitted data, ‘Est unfit’, almost the whole 

sample data was used to estimateG9. Hence, G9 already ‘knows’the data sample and 

for this reason cannot be used as a predictor. In order to illustrate the prediction 

accuracy of the models, the model with the largest ‘unknown’ data, i.e., G1 is used. 

Figure 3 shows the comparison of the measured data and model G1(t), result of 

inverse Laplace Transform ofG1(s) = 0.4193 / (s + 0.4103);the solid line is the 

measured output and the dashed line the model response with 9.5% unfitness. The 

transfer function G1(t), can represent the process input-output relationship with 

sufficient precision. Furthermore, the model is estimated at an early stage, around the 

initial 10% duration, independently of any previous process knowledge.  

 

Figure 3. Comparison between the G1 response and measured data 

STEP RESPONSE 

Figure 4(a) shows the step response for the model G9. The model reaches steady-state 

about the sixth hour for a threshold of absolute two percent about the final value. The 

step amplitude used as input, 2.06, is the average drilling goal ahead. The system 

responds to this input reaching and staying steady at the output peak, yp = 2.05, about 
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the 16th hour, tp. In this case, the steady-state value is the peak value because it is the 

value that the system tends to when t→∞ (Mandal, 2006). The average drilling rate 

from the measured output data is 2.1 meters per hour approximately the model output 

at steady-state, with a three percent error. Consequently, the model represents the 

system at steady-state. Although, the transient response stands for a significant part of 

the system dynamics. The system has a transient response every time it starts or stops. 

Although it stays at the transient state when it need small corrections, as, for instance, 

to fit a casing pipe to secure the well. In this case, the system also has inputs as small 

as one. For this input, the average response of the system is 0.55 meters per hour. In 

order to assess the system transient response, a unitary step unit was introduced to the 

system producing the system response, as shown in Figure 4(b). The average response 

for the unitary input is achieved around one hour by the system indicating that the 

system is performing in the transient state. 

 
Figure 4. (a) 2.06 step response (b) Unit step response 

CONCLUSIONS 

The results of the model’s accuracy were explicit. The models were consistent with 

the modeling approach and methodology. The valid transfer functions obtained 

reliablydescribed the process behavior and presented evidence of their accuracy using 

a range of model quality measurements. These findings thus lend support to the use of 

transfer function as a valid model approach and analytical technique in order to 

describe the dynamic conditions of production in repetitive processes in projects.  

Accounting for transient responses, transfer function fulfills a gap left by network 

scheduling and queueing theory as well as linear and dynamic programming, which 

ignore the transient stage and assume that the process is at steady-state. Moreover, a 

transfer functions may act as a multi-level management tool. Because transfer 

functions provide an output function from an input function, they enable the creation 

of accurate plans rather than single actions and a throughput function, instead of a 

system position. Transfer functions may be used by site managers as a process 

descriptor to monitor and control low-level activities, as shown in Figure 3. Dynamic 

and accurate plans that respond to actual inputs can regain the trust of those 

conducting the project work on planning and scheduling. Moreover, the model 

simulation may be used in a means-ends analysis determining the best solution to a 

construction process, which frequently requires the optimization of resources to the 

detriment of shorter duration. In other words, managers may use the model adjusting 

the drill ahead goal plan until attaining the defined goal, supporting managers’ 
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decision-making process. Once the managers are satisfied with both the drill ahead 

goal plan and the system’s outcome, the plan is executed. A transfer function may 

also be applied to represent higher levels, providing project managers a holistic view. 

Reliance on this method must be tempered, however because the case does not 

represent the general conditions of repetitive process in construction. There is a 

variety of construction processes that happen in different states, production runs, and 

different learning curves creating unique process’ characteristics. For instance, this 

study presents the analysis of system’s transient and steady-state response, but not 

unsteady-state because the case scenario does not have this characteristic. Although 

the model can be reused in similar processes as an initial model, a limitation places on 

the existence of the process’ input-output data. It means that the model accuracy 

cannot be evaluated until some data has been produced. Finally, the study explores 

several concepts that are unfamiliar to general construction managers at this point 

restricting its audience. Nevertheless, the search for and the aggregation of 

knowledge and expertise from different disciplines and technical fields constitutes the 

foremost forces driving the evolution in managerial sciences. 

FUTURE OUTCOMES 

Different system identification approaches can write equations for practically any 

process. However, only after extensive research about the dynamic conditions of 

production in project-driven systems the lack of knowledge about the transient and 

unsteady-state responses can be replaced by explanatory and mathematical laws to 

production in projects. In a further horizon, processes transient and unsteady-state 

will be understood and managed to generate an optimum process outcome. Being it 

reducing the transient time, and faster-moving processes to steady-state or applying 

unsteady-state processing techniques producing an average output above steady-state 

levels and then creating high-performance processes. 
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