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ABSTRACT 
Improper design in the construction industry leads to change orders, rework, 
decreased constructability, cost overruns, and delays, making it one of the biggest 
causes of waste. This study aims to develop a Lean Design Process to enhance design 
reliability by creating a learning environment using the design correctness ratio. 
Wastage is first identified by analyzing the planning and design processes. A new 
design workflow is then proposed using lean concepts to smooth design work, reduce 
unnecessary design errors, and increase design reliability. The proposed process can 
provide team members with feedback on design status, thus allowing for continuous 
improvement. The lean process is conceptualized using system dynamics to validate 
applicability. Analysis shows that the proposed lean design process can enhance 
design completeness and reliability, thus increasing design correctness. Waste due to 
improper design could be reduced accordingly. 
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INTRODUCTION 
Construction projects are increasing in complexity (Gould and Joyce 2009), such that 
no single designer can claim comprehensive expertise. Thus final designs may 
include hidden problems that appear only in the construction phase (Abdelsalam et al. 
2010). While some minor design defects can be resolved by the general contractor in 
discussion with the architect, more serious problems require a mandatory change 
order, which may increase both time and cost (Josephson et al. 2002, Günhan 2007).  

Improper design, defined in the study means design error caused by design itself 
and incurs change order in the construction phase, is potentially one of the biggest 
sources of waste in the construction industry. From beginning to end, the project life 
cycle can be roughly divided into phases including conceptual, planning, design, 
bidding, construction, operation, maintenance, and decommission. After the architect 
completes the design, design drawings are delivered through the tender process to the 
construction team. If an improper or unfeasible design is found in the construction 
phase, the design has to be returned to the architect for correction. This continuously 
repeated correction process increase both time requirements and cost (Mendelsohn 
1997, Kawamura 2000). In the entire project life cycle, planning and design have the 
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greatest impact on the whole project (Soibelman et al. 2003) and faulty planning and 
design can result in significant change orders. Chang et al. (2007) reported that 40% 
of design changes result from issues arising in the design phase. Therefore, finding 
ways to reduce design errors and minimize cost overruns and schedule delays 
resulting from change orders is a serious issue in the construction industry (Nylen 
1996), focusing attention on effectively coordinating design with construction to deal 
with design problems before they occur (Riley 2005, Li et al. 2008).  

Lean production concepts were first introduced to the construction industry in the 
1990’s (Koskela 1992). These so-called lean construction practices can be seen as a 
means of adopting theories and methods from lean manufacturing to enhance 
construction management performance (LCI-Taiwan 2013). Several studies have 
shown that lean construction can break through the traditional trade-off between cost, 
speed, and quality (Best and de Valence 2000, Ballard 2000, Arayici et al. 2011, Ko 
and Chen 2012, Ko and Tsai 2013). The objective of this study is to adapt the lean 
production system to enhance design accuracy. 

BACKGROUND INFORMATION 

DESIGN CORRECTNESS 
Design correctness can be regarded as a metric to measure the degree to which 
design meets the needs of the user or application. The concept has been used in 
construction, software design, hardware design, and knowledge engineering projects 
to enhance design quality (Sandecki 1998, Barrow 1984, Riet 2008, Ekenberg and 
Johannesson 2004, Barber et al. 2003). First Time Pass Ratio was originally 
proposed as a standard index for evaluating construction quality, and it has the 
advantages of easy data acquisition, simple calculation of product quality and clear 
display of product appearance (Lin 2005). Chen (2009) applied FTPR as a design 
quality control method, converting FTPR construction evaluation items into design 
projects to calculate the FTPR in design, thus determining the quality of the design 
process. This allows for defective designs to be immediately improved rather than 
waiting until the design was completed or in the construction phase. In the FTRP 
process, first, FTRP requires a detailed planning inspection and work schedule, 
followed by the selection of key tasks and quality evaluation. Experienced staff 
members then evaluate the selected tasks to calculate FTRP. Accuracy calculations 
and statistical analysis results are represented as the quality of product design, which 
could be used to provide feedback for design correction and revision. 

SYSTEM DYNAMICS 
System dynamics, proposed by Forrester (1961), is used to understand the behavior of 
systems. It explains dynamic behavior of the system using the causal relationships of 
the factors and their interdependence (Tesfamariam and Lindberg 2005). Due to this 
characteristic, system dynamics can be used to understand how things change over 
time (Forrester, 1991). Population growth is frequently used as an example to explain 
how system dynamics functions. As shown in Figure 1, population is regarded as a 
tank, whereas birth rate inflows population into the tank and death rate drains the 
population from the tank. Through the changing of time, dynamic behavior of the 
population system can be understood, which can be used to develop social strategies. 
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Figure 1: Causal Relationships of Population Growth 

CURRENT DESIGN FLOW 
Design of construction projects can be largely divided into two stages: preliminary 
and detailed design. As shown in Figure 2, architectural plans for the preliminary and 
detailed stages are usually completed independently by architects. Preliminary 
designs are usually prepared for design competitions, with the winning design plan 
approved to go to the detailed design stage. Architects make revisions on the winning 
design plan according to owner’s requirements, while the structural portions are 
handed to structural engineers to generate detailed shop drawings. Once the plans are 
checked for errors, they are signed and approved. The relevant engineers conduct 
facility and equipment analysis, after which the plans are again signed and approved 
after checking for errors. The architect then integrates the prints obtained from these 
processes. This design workflow may appear smooth on the surface, but it actually 
hides underlying issues. Failing to uncover these issues in the design phase not only 
affects the design process, but the actual construction as well. 
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Figure 2: Current Design Workflow 
Figure 2 shows the current design and planning workflow. With the exception of the 
structural and equipment designs which were delegated to structural and equipment 
engineers, every stage of the design plan is the responsibility of the architect. To 
analyze issues in the current design process, this research illustrates the current-state 
value steam mapping of design processes. As shown in Figure 3, the owner first tasks 
the project design to the architect who would then independently complete each part 
of the design plan. Structural and equipment engineers must wait until the upstream 
design work had been finished before analyzing, illustrating and inspecting the 
designs. The completed work is then handed over to the construction firm to initiate 
construction. The completed building is then turned over to the owner. If work is 
obstructed by design errors or construction issues, the design is returned to the 
architect for corrections. 
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Figure 3: Current-State Value Steam Mapping 

LEAN DESIGN PROCESS 
Product designs undergo numerous reviews and are subjected to continuous 
brainstorming sessions by designers before they are actually manufactured. These 
processes are also applied in construction. Simply put, architectural designs are 
organizations of space for using material technologies to construct a living 
environment for people. Hence, architectural designs are by nature multi-disciplinary 
efforts, requiring consideration of many aspects including structural composition, 
aesthetics, pipes and cables, water drainage, overall environment, and more. Over its 
lifespan, from construction through maintenance, a building experiences many 
problems. As in the automobile industry, even a single oversight in the design process 
can require design corrections and reviews during manufacture, or time- and cost-
intensive repair work (Ko and Chung 2014). 

In the proposed design process, as shown in Figure 4, the architect leads the entire 
design process and is responsible for communicating with the owner. The architect 
translates the owner’s ideas and requirements into an architectural model. The design 
flow is divided into three stages preliminary design, basic design, and detailed design. 
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Figure 4: Lean Construction Design Process 

PRELIMINARY DESIGN PHASE 
The main purpose of the preliminary design phase is to prepare the necessary 
documents and illustrations for a design competition. These include the exterior 
perspective, interior perspective, floor plans, sectional plan, elevation plan, and 
design report. This phase of the design process is led by the architect in close 
consultation with the owner. 

BASIC DESIGN PHASE 
This stage focuses on the detailed analysis of the building plan model for the design 
competition’s winning entry, including the planning for structural reinforcements, 
structural strength and load analysis, water pipe and electrical layout, and emergency 
evacuation routes. 

DETAILED DESIGN PHASE 
The aim of this stage is to compile all documentation following three inspections to 
reduce design errors. Components and equipment in the basic design plan are marked 
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and represented in the design plans. The architect determines the brand, model, and 
style of the equipment, such as doors, windows, elevators, and air conditioners. 

VERIFICATION 
System dynamics was used to validate the feasibility of the proposed Lean Design 
Process, converting the workflow into conceptual causal loop diagrams to analyze 
possible results when implementing the process. The design flow is divided into three 
phases: preliminary design, basic design, and detailed design. 

PRELIMINARY DESIGN SYSTEM 
The aim of the preliminary design system is to understand whether the collected 
information and building concept can meet the owner’s requirements. The architect 
creates a conceptual building system after inspecting on-site conditions and obtaining 
design requirements. Information from the design concepts then is sent to the 
structural and equipment engineers for structural and equipment planning. The 
preliminary design correctness ratio represents the degree of correctness of the 
system’s design. Failure to achieve 100% correctness triggers successive rounds of 
corrections until the correctness reaches 100%. Figure 5 shows the preliminary design 
causal loop. The next design stage is only implemented when the current stage 
reaches 100%, thus eliminating the need for redesign, which would idle other team 
members and delay work schedules. 
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Figure 5: Preliminary Design Causal Loops 

BASIC DESIGN SYSTEM 
Figure 6 shows the basic design causal loop. Changes to the building model, 
structural and equipment plans are carried out based on the design correctness results. 
With the participation of the general contractor, the first round of corrections is able 
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to cover the constructability analysis, structural analyses, model detailing, and 
equipment analyses. When the basic design correctness ratio has reached 100%, these 
documents are then sent to the next phase to complete the detailed designs. 
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Figure 6: Basic Design Causal Loops 

DETAILED DESIGN SYSTEM 
As in the previous system, this phase begins with a basic design model with a 100% 
correctness ratio. Once compiled by the architect, the basic design plans are sent to 
the structural and equipment engineers to illustrate the detailed plans. The architect 
also makes detailed changes to the model and assesses design correctness at this stage 
in consultation with the general contractor regarding constructability analyses. In 
Figure 7, the general contractor conducts a feasibility analysis while the architect and 
structural, and equipment engineers reference the design correctness ratio to conduct 
a first round of corrections to the relevant design prints. Subsequent rounds of 
corrections are conducted until the finished design is assessed as being 100% correct. 
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Figure 7: Detailed Design Causal Loops 

DESIGN CORRECTNESS ANALYSIS 
The design correctness ratio is analyzed using system dynamics. Basic design phase 
can only be launched while design correctness in preliminary design phase achieves 
100%. Likewise, when basic design achieves 100% correctness, detailed design phase 
can be carried out. Experimental results of detailed design phase are displayed in 
Figure 8. Based on the results shown in line A, model detailing, the detailed structure 
plan, and the detailed equipment plan attain 100% completeness in the 1st week. The 
reduced time required for the design period points to the benefits of creating an 
organizational learning environment for the design team. However, as shown in line 
B in the figure, the design correctness ratio is affected by detailed constructability, 
thus the entire design project is completed by the 5th day of the 2nd week, as shown 
in line C in Figure 8. 



Chien-Ho Ko and Neng-Fu Chung 

472 Proceedings IGLC-22, June 2014  | Oslo, Norway 

0

20

40

60

80

100

0 1 2 3 4 5
Time (week)

Co
m

pl
et

en
es

s/C
or

re
ct

ne
ss

 (%
) A

B
C

 

Figure 8: Analyzed Results in Detailed Design System 

CONCLUSIONS 
This research uses Lean Production perspectives to review traditional planning 
processes in construction projects. Value streaming is applied to ascertain hidden 
sources of waste in traditional workflows. A Lean Design Process is then developed 
using lean concepts to make the process more pliable to owner’s needs, i.e. 
customer’s value. System dynamics is used to validate the feasibility of the proposed 
process, and analysis results show that it can increase design correctness and 
reliability, thus increasing value to the owner. 

Construction projects require the joint effort of professionals from different fields. 
Currently, design plans tend to be completed independently by the architect, who is 
responsible for resolving design errors discovered in the design phase or change 
orders made in the construction phase. Current practice frequently results in schedule 
delays or budget overruns. This research establishes an organizational learning 
environment within the design workflow. The root cause of design errors can be 
identified though systematic inspections of design correctness. This approach not 
only helps correct the design itself, but allows design team members to learn from 
errors. In addition, while traditional design processes are divided into two stages (i.e., 
preliminary and detailed planning), this research seeks to provide project participants 
with the opportunity to inspect actual design contents by dividing the design process 
into three phases: preliminary, basic, and detailed designs. This three stage approach, 
coupled with multiple design feedback cycles, builds team consensus, and allows for 
the early detection of errors, thus optimizing the resulting design plans. 
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