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ABSTRACT 
Precast concrete industry is highly involved in construction projects through the supply of 
bespoke products. It delivers many advantages to the construction industry in terms of saving 
time, cost, and reducing congestion on construction sites. However, precast manufacturers 
are facing a substantial problem of long customer lead-time for bespoke concrete products. 
Most of time and effort is spent on a long production process consisting of product design, 
production planning, and shop floor manufacturing. Also, variations in the process due to 
many uncertainties, many parties and human involvements extend buffers of the customer 
lead-time. Lean construction concepts that are adapted for the unique production system of 
construction work recognize the above problem as waste and directly aim to eliminate them. 
Complying with the concepts, the authors have proposed an automatic planning system called 
artificial intelligence planner (AIP). The AIP retrieves product data from design process for 
the automatic planning process. In order to develop requirements and specifications of the 
AIP, this paper concisely describes precast design and production planning processes from a 
case study of a precast company. Artificial intelligence and flow-shop scheduling techniques 
that provide development background are reviewed. Also the components of the AIP are 
described. The AIP is expected to reduce the customer lead-time, assist precast 
manufacturers to manage changes in product requirements and/or delivery dates; therefore, 
the construction industry will share the benefits. 
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INTRODUCTION 
The construction industry outsources and receives many advantages from prefabrication and 
precast concrete manufacturing such as saving time and overall cost, due to enabling 
concurrent different production lines; increasing constructability, and reducing congestion on 
site due to changing from an uncontrollable work environment on site to a controllable one in 
factories. Precast concrete manufacturers (or precasters) are involved in a construction 
project team as suppliers or subcontractors who produce, deliver, and elect precast 
components.  

Precast products used in the construction industry are both catalogued and bespoke 
products. Those catalogued products have been well designed and produced, like ordinary 
manufacturing products, in a make-to-stock fashion whilst the bespoke products are designed 
and produced to meet requirements of a particular construction project. The bespoke products 
therefore are make-to-order production style. They are unique and require longer lead-time 
and more sophisticated production management for precasters to coordinate with the design 
and construction team of a construction project.  

This paper aims to propose a novel production planning system for reducing the lead-time 
of the bespoke products. The organization of the paper is starting from reviewing precast 
production process including product design process and production planning process from a 
case study because they take most of the lead-time. The production process review helps to 
understand considerations, practices, and procedures of the processes. Then, lean 
construction concepts are implemented to address problems in the processes and to provide 
sensible solutions. After that, a new methodology using data integration, artificial 
intelligence technologies, and a flow-shop scheduling technique is developed. Finally, the 
paper outlines a framework for developing an automatic production planning system called 
artificial intelligence planner (AIP). The requirements, specifications, and functionalities of 
the AIP are described. Its components are also explained. 

THE PRECAST INDUSTRY 
Bespoke precast production process consists of three main processes namely product design, 
production planning, and shop floor manufacturing. Only the first two processes concerned 
with generating and managing product data are briefly reviewed in this paper. The design 
process, which is an upstream process, has an impact on the planning process because 
product design is the main source of input for planning. The production processes from a 
case study of precast concrete façades of an office building are described as follows.  

PRODUCT DESIGN PROCESS 
Product design is the process of developing all product definitions. Precasters, as 
subcontractors or suppliers, gather the project designs from a project designer team, which 
are not prepared for precast work to do their own product detailed designs and they have to 
ensure that both architectural and engineering requirements of the project are met.  

Precast designers initiate precast general arrangement drawings (PGAD). PGAD are key 
drawings, which demonstrate how the façade is broken down into pieces, how they are 



 

jointed together, how they are fastened to the structure behind, and what their appearances 
are on the building. The important criteria for economic designs are to make precast pieces as 
large as practicable, and identical as many as possible in order to minimize the number of 
moulds and to increase repetitive work. Since precast units are cast in purpose-built moulds, 
effective mould-reuse helps reduce the unit cost of products. Although the iteration of mould 
use means cost saving, the production programme is longer due to waiting time for mould 
availability. PGAD are later used by many successive processes particularly precast planners 
use them for preparing the bill of quantities (BOQ), delivery schedule and production 
planning. 

PRODUCTION PLANNING PROCESS 
Production planning is the process that gathers necessary information to analyze and issue the 
production schedule, and controls the shop floor manufacturing progress. Precast planners 
receive product information from the design process to perform the planning process. They 
assign identifications to all designed precast pieces, group the similar pieces to the same 
product families, and decide number of moulds required. A purpose-built mould is prepared 
for the largest piece in the family with inserts or adjusts to reduce the mould size for smaller 
pieces of the same general form. This enables the reuse of moulds for several pieces.  

The planners arrange a production plan regarding two constrained requirements: the 
current workload and the construction project schedule from contractors. Contractors could 
make a request of product delivery related to their construction progress on site. The planners 
and the contractors agree upon their own constraints to create a product delivery schedule. 
The precasters’ current workload is analyzed and tuned along with the factory capacity whilst 
achieving the delivery schedule. The planners estimate manufacturing workload of a new 
project into the production plan. The manufacturing workload is expressed in terms of 
“casting hours” which are the aggregate of the number of hours for fabricating precast pieces 
based on the their size, difficulty of the design, and materials procurement.  

The production schedule is arranged by simply applying the earliest due date rule and the 
experience-based estimation. The planners assign a production sequence and estimate the 
manufacturing time required for the products. Products with the earliest due dates are placed 
in the first order and the next product in this fashion.  

CORRECTION AND CONTROL EFFORTS 
Precasters spend substantial time and tedious efforts on preparing PGAD due to many parties 
being involved in the design process of construction projects i.e. architects, engineers, and/or 
trade specialists. In most cases, construction projects do not have enough time to allow each 
party to finish their design in turn. Rather these parties develop the project designs in a 
concurrent manner. Precasters usually suffer from incomplete design information that comes 
from the project designer team (both architects and engineers). Precasters have to use that 
information but they spend several man-hours in order to check for any mistake, mismatch, 
missing, or ineptness in it.  Precasters are prone to many changes that might occur from the 
project designer team at any time. Precasters absorb many risks from those changes and 
incorrect design information.  



 

In addition, a precast production schedule can be revised many times. Not only the 
project design team can affect the precast production planning but also the contractors who 
directly request the product delivery. The construction schedule is revised quite often due to 
many variations on site and consequently the delivery schedule is revised. A change in 
product delivery dates causes disturbances to precasters, as they have to reallocate their 
constrained resources over the current workload and reschedule their production plan. These 
changes consume time and efforts of the planners and causes waiting times of the other 
successive procedures, and they fluctuate the optimum resource allocation level of precasters. 
Moreover, there is no guarantee that the earliest due date rule provide the optimum 
production sequence. 

LEAD-TIME CHARACTERISTIC 
Precasters are facing the problem of a long production process lead-time. It is necessary that 
definitions of production time be clearly understood. Hopp and Spearman (2001) defined that 
cycle time is a random variable relating the time it takes for a job. Unlike cycle time, lead-
time is a management constant used to indicate the anticipated or maximum allowable cycle 
time for a job. Customer lead-time is the amount of time allowed to fill a customer order 
from start to finish. In a make-to-stock environment, the customer lead-time is close to zero 
because products are ready to serve when customer arrives. In a make-to-order environment, 
the customer lead-time is the time that customers allow the company to design, produce, and 
deliver an item. For the case when variability is present, the customer lead-time must be 
greater than the average cycle time in order to have acceptable serviceability.  

Customer
lead-time

Time

Variation

Mode of
cycle time

late-delivery

 
Figure 1: Cycle time distribution (reproduced from Vandaele and De Boeck 2003) 

Lead-time is characterized by an asymmetric distribution, mostly skewed to the right 
(Vandaele and De Boeck 2003). If something intervenes in the production system, the impact 
on the customer lead-time is more likely to extend time rather than to decrease it. Remedies 
to those interventions might be rework, idle waiting time, congestion, or correction. The 
longer lead-time means cost to the precasters. The large right side variation in Figure 1 shows 
that the precasters are not good at rectifying a confrontation, and their production system is 
not sound. Moreover, the precasters lose their competitiveness from a longer customer lead-
time. Two possible ways to reduce customer lead-time can be to shorten (mode of) cycle time 
and to narrow the variation. 



 

THINK ‘LEAN’ 
Lean construction concepts have evolved from the lean production system in the automobile 
manufacturing at Toyota led by engineer Ohno (Howell 1999). The concepts aim to eliminate 
all investigated waste using continuous improvement strategy toward an ideal waste-free 
production system. However, construction and manufacturing are different. Some might say 
that construction is more unique work with less repetition, so there are fewer advantages 
from learning curve or fewer chances of improving the routines; more complex organization 
with highly uncertain environments that means it is difficult to plan and control the project. 
Construction is likely to produce more waste so it really needs lean concepts. 

WASTE 
Lean concepts perceive waste in the production process as any resources that are spent on the 
process but neither adds value to the final products nor conforms to the customer 
requirements. Waste can be quantified in terms of time, cost, and quantity. Formoso et al 
(1999) have classified waste in the production process in many different forms i.e. 
overproduction, overqualification, waiting time, transportation, inefficient processing, 
inventories, unnecessary movement, defects (under qualification), and others. In terms of 
time resource, Koskela (1999) elaborated waste in the cycle time in the following equation.  

Cycle time = processing time + inspection time + waiting time 
 + transporting time + correction time 

Only processing time adds more value to final products, the others do not.  Lean concepts are 
suggested to shorten the cycle time by improving the efficiency of the processing and by 
eliminating non-value-adding times that are inspection time, waiting time, transporting time, 
and correction time. These non-value-adding times are consequences of the variations in the 
processes as depicted in Figure 1.  

Indeed, Precasters, as serving the construction industry, are encountering long customer 
lead-time due to long cycle time for manual production processes (focusing on product 
design and production planning) and long buffer time for anticipated variations. Since it is 
difficult to predict the number of changes from imperfect project designs and uncertain 
product delivery schedules, but every change means repeating the manual production 
process. Precasters have to set a large buffer time for that. Therefore, this study considers 
waste in the precast production process from repetition of manual correction efforts caused 
by changes in the precast product design and the production planning.  

IMPROVEMENT 
Koskela (1999) suggested that construction could be conceived as a prototype (one-of-a-
kind) production, which normally is accomplished by consistently debugging errors in design 
and production plans. There is little opportunity to learn and thoroughly correct designs and 
plans from a completed project for reuse on a subsequent similar project. Therefore, 
imperfect designs and unsound construction plans are quite common, and it is more likely 
that the whole supply chain including precasters would also interfere with changes as the 
debugging attempts. The improvement issue is how to relieve those efforts and time, and/or 



 

reduce the chances of occurrences. Two research studies that aim to improve the precast 
concrete industry are reviewed below.  

The first one is from the Lean Construction Institute. Ballard et al (2002) introduced a 
new production management approach called ‘decoupling buffer’ for precasters. The 
decoupling buffer is used for absorbing the variations of customer orders and shielding 
precasters from producing unwanted products. The strategy is to divide the manufacturing 
process into two stages: pre-manufacturing and final products manufacturing. Precasters are 
suggested to prepare production information, and pre-manufacturing elements rather than 
straightaway manufacture the final products. Only when there is a ‘pull’ from near order, 
probably in weekly time, prior to delivery dates, the final products are made.  

The other ongoing research is being conducted by the Precast Concrete Software 
Consortium (PCSC, 2001). PCSC are developing an automated, comprehensive design 
system for precast industry. The system aims to automate precast design and the drafting 
process. It also assists the precast designers by combining architectural, engineering, and 
precast manufacturing designs together in one attempt. That means all three concerning 
aspects would be considered at the same time. This system is expected to reduce mismatches 
in the designs and the customer lead-time spent on precast design and drafting work.  

Apart from that, this paper outlines the research that aims to reduce the efforts and time 
for precast production planning by proposing the AIP. The main objectives of the AIP are to 
integrate data from the design to planning processes by eliminating paper-based data; to 
reduce tedious human efforts for repetitive work on correction or revision of planning; to 
improve production planning method by using flow-shop scheduling technique; and to 
generate the production schedule automatically for the precast manufacturing factory. By 
preparing product designs, the AIP system retrieves all relevant product information, 
analyzes it with all conventional planning considerations, and automatically outputs a 
production schedule. The AIP uses the flow-shop scheduling technique to model the precast 
manufacturing process and to optimize the schedule. The AIP is anticipated to replace human 
interpretation and intuition efforts for production planning. Precasters also could revise the 
design or reschedule the plan faster with fewer exertions, as the changing information is 
perceived by the automated system can amend the other relevant information at one time.  

The AIP system implements the methodology to reduce customer lead-time for bespoke 
precast products. The cycle time for production planning is reduced by the automation and 
the variation is decreased by releasing human involvement. Moreover, the AIP could be 
integrated with the PCSC’s system to provide a completed integration system of precast 
product design and production planning. 

ARTIFICIAL INTELLIGENCE  
The planning process can be automated by employing algorithms that have the ability of 
processing data like human intelligence. The techniques called artificial intelligence (AI) 
have been introduced to the construction and manufacturing industries for many decades. 
Their applications and usefulness are presented in many research studies. Two AI techniques 
that are selected to develop the AIP are the genetic algorithm (GA) and the artificial neural 
networks (ANN). Some of their applications and potential to be applied on the AIP are 
briefly described as follows. 



 

PRECAST FLOW-SHOP SCHEDULING WITH GA 
The precast manufacturing process mainly consists of six routine tasks i.e. mould assembling 
and oiling; reinforcement cage, mosaic, tile (or other embedded parts) installing; concrete 
placing; curing; mould stripping; and product finishing. Precasters produce their various 
designed products with these tasks where a different specialized crew performs each of them. 
Leu and Hwang (2002) and Chan and Hu (2002) have modeled the precast manufacturing 
process on the basis of flow-shop scheduling problem that is the production scheduling of 
mix products package on different workstations (which is well known as m machines and n 
jobs). The precast manufacturing process was modeled into mathematic functions with some 
constraint functions to reflect a real situation. The aim is to solve the modeled problem by 
searching for the production sequence that gives the optimum total manufacturing time 
(usually called ‘make-span time’).  

Previous research has been dedicated to improve the optimization technique and to model 
the problem properly. In recent years, the optimization technique has evolved from the 
heuristic algorithm to GA and it has been suggested that GA gives better results than the 
earliest due date rule or other heuristic rules (Chan and Hu 2002). The important scheduling 
criteria can be included into the model to form the multi objective function such as to satisfy 
delivery schedule, to minimize the stock of final products, and to minimize the product late-
delivery. However, many assumptions have been made in order to simplify and possibly 
model the precast manufacturing such as precast moulds are infinite resources without 
considering repetition or type.  

This research refines the assumptions of the past research to make a more realistic flow-
shop model for bespoke precast production. Firstly, moulds are scarce resource and purpose-
built for particular product families. Moulds will be occupied at the beginning of the mould-
assembling task and released at the completion of the mould-stripping task. Any following 
job needs to wait for its mould type available, and then it can start the mould-assembling 
task. This is a constraint for arranging a production sequence. Secondly, the tasks are 
classified into two types namely preemptive and non-preemptive works. All tasks are 
preemptive except concrete placing and curing are non-preemptive works.  Once the non pre-
emptive work starts, it must be sustained until completed. Although concrete-placing and 
curing tasks are non-preemptive, they are different in details. Concrete-placing task must be 
finished within working time or plus overtime if overtime work is allowed. If it cannot be 
finished, the task is considered to start on the next working day. Concrete-curing task is non-
preemptive and start immediately after the concrete-placing task, which is its predecessor.  

Thirdly, time spent to complete the tasks of any precast piece is called the processing 
times and are not deterministic. They depend on the difficulty of the product design and the 
manufacturing environment. Another AI technology, ANN, used for determining the 
processing times, the inputs of the flow-shop scheduling, is described in the following 
section. The precast flow-shop scheduling with GA is integrated to the AIP to generate the 
automatic production schedule.  



 

ESTIMATION AND CLASSIFICATION USING ANN 
ANN attempts to model the brain learning, thinking, and retrieval of hidden information or 
interrelationship of data and associative recognitions. ANN are biologically inspired; that is 
they are composed of processing elements that analogously perform the most elementary 
functions of the biological neurons. These elements are then organized in a way that is 
similar to the anatomy of the brain. They can be trained to learn from experience, generalize 
from previous examples to new ones, and conceive essential characteristics from inputs 
containing irrelevant data (Wasserman 1989). ANN has the capabilities of generalization, 
fault tolerance, adaptive and associative performance, ability to perform dynamic and real-
time functions, ensure their appropriateness for many practical applications in construction 
(Moselhi et al. 1991). Applications of ANN in construction include construction cost 
estimation (Adeli and Wu 1998), optimization of mark-up estimation (Moselhi et al. 1993), 
estimation of construction productivity of earthwork (Chao and Skibniewki 1994), and 
prediction of hoisting times of tower cranes (Leung et al. 2001). Moreover, Soibelman and 
Kim (2002) applied ANN in a classification problem. By training the networks with some 
concerning factors, they could predict whether the project would delay or not. 

Since bespoke precast products are varied in shape, reinforcement, materials, etc. The 
differences of them specify different processing times. The more difficult design or poorer 
working environment the more time consumes. There are some possible factors that indicate 
the difficulty in manufacturing a product of a particular design. How much each of these 
factors influences the processing times might be very difficult to explicitly explain or reveal. 
Therefore, this research applies ANN for being a learning tool. ANN for the precast 
production requires some sources of information from product designs, and production daily-
reports. Apart from many available ANN models, the multiplayer perceptron (MLP) has been 
selected. This model type is simple but practical for various kinds of input/output map 
although it is slowly trained and required a number of training data. The perceptrons are 
layered feedforward networks typically trained with static backpropagation. The model has 
three layers including an input layer, an output layer, and one hidden layer.  

MLP/ANN is trained by a set of input data and a set of output data. After being training, 
the networks memorize the pattern of the relationship between the input data and the output 
data. This pattern must be tested and evaluated whether to use or to retrain it. The pattern is 
used for estimating a new set of output data from a new set of input data. A set of input data 
is categorized into three groups namely product dimension, material, and working 
environment. Dimension factor includes height, length, width, base area, surface area, 
dropping area, volume, weight, number of curve, number of angle, and number of block-out. 
Material factor includes concrete water-cement ratio, strength, slump, tiling area, weight of 
reinforcing bar, number of different bar-shape, bar size, and bar spacing. Working 
environment factor includes manpower and working area for the tasks. A set of output data 
includes the processing times of the tasks and the product family. Totally, there are 35 
perceptrons in the input layer, and 7 perceptrons in the output layer.  



 

ARTIFICIAL INTELLIGENCE PLANNER 

SYSTEM SPECIFICATIONS  
The AIP is aimed to be able to perform all basic tasks of the precast planners. Those tasks are 
such as grouping precast pieces, deciding number of moulds, estimating the processing times 
of all manufacturing tasks, arranging job sequence, and allocating production resources. The 
AIP retrieves input data from many types of documents, i.e. product designs in CAD format, 
BOQ, delivery schedule, current workload, shop-floor daily report, and then to automatically 
generate production schedule or to update the schedule. The AIP has to consider the planning 
criteria in order to keep producing a consistent preferable schedule. The criteria are such as to 
satisfy delivery schedule, to minimize the inventory of final products, to minimize late-
delivery, to minimize total idle waiting time of the crews, to maximize reuse of moulds, to 
stabilize the resource allocation, etc. Therefore, the AIP needs a system structure that is 
capable to retrieve the relevant inputs, process data, and present the outputs.  
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Figure 2: AIP’s components  

COMPONENTS OF THE AIP 
Planning is all to do with placing activities on the time axis. Planners have to decide on the 
‘what’ in terms of the ‘when’ (Vandaele and De Boeck 2003). Production planning, 
therefore, is an arrangement of what is going to be produced and when it should be produced. 
This definition gives two concerns about what and when. ‘What’ means information about 
the product. It could be the product itself and all required materials and resources. ‘When’ 
means the time to produce, at that time the company resources have to be utilized and 
constrained by the time that the product has to finish. ‘When’ is constrained by limited 



 

resources and product due dates. The challenge of making a production plan is that there are 
many alternatives to arrange the plan but there should be a good mechanism to select the best 
out of them. The best plan should be quantified by the cost of the production program that the 
best plan should give the least cost to the company. By these facts, the AIP consists of four 
components in order to perform the planning process. They are namely: central database 
(CDB), graphic data extractor (GDE), processing time estimator (PTE), and production 
planner (PP). Figure 2 shows the components of the AIP. 

Central database (CDB) 
CDB is responsible for supplying data needed in the production planning and being data 
storage. It stores important descriptions of products in both terms of ‘what’ and ‘when’. CDB 
is an infrastructure of the automatic system AIP. When the design process generates new data 
of a precast piece, these data will be recorded in CDB. CDB retrieves every product due-date 
from the product delivery schedule. CDB supplies required product information to the 
planning process. Also, CDB records output data from planning and these data are used as a 
previous reference when the plan is revised. In this way, data for planning are integrated and 
standardized throughout the processes. CDB provides the accessibility to retrieve, modify 
and record the data to the other components. The time that used to spend on inputting and re-
inputting paper-based data can be reduced. CDB is developed in a proper data structure using 
a relational database system, which provides a practical and comprehensible database. Data 
transfer between CDB and the other components could be secured.  

Graphic data extractor (GDE) 
GDE is responsible for supplying the information about ‘what’ for the AIP. It is an embedded 
VBA (Visual Basic for Application) on the CAD software (AutoCAD). Precast products are 
typically drafted on two-dimensional CAD drawings, which are combined with many sets of 
lines and layers without the meaning of products or objects unless they are interpreted by 
human. GDE transforms those sets of lines and layers into system interpretable objects. Then, 
the information of the drawing objects, which represent the precast products, is extracted and 
sent to CDB in order to record it. The AIP recognizes the identity of a precast piece by 
referring to a name of the drawing objects. GDE also can total number of pieces by each 
product family and calculate total quantity of required materials or constituent parts of the 
products. It helps release the human efforts for preparing a bill of materials of the products. 
In other words, GDE translates CAD formatted data to CDB formatted data and determines 
the production workload for the AIP.  

Another function of GDE is to classify the products into product families. GDE uses 
ANN for analyzing the similarity or the difference of the products. This ability of GDE gives 
a decision on how many moulds precasters should prepare with regard to the number of 
classified product families. 

Processing time estimator (PTE) 
The processing times for manufacturing tasks of the precast products are important inputs 
and have to be estimated before conducting flow-shop scheduling and preparing the 



 

production schedule. PTE estimates these times from past data of product designs and their 
processing times, received from CDB. The other source of inputs comes from the shop-floor 
daily report. The report shows the actual processing times that have been used and the actual 
working environments. These data are treated as the training data for ANN. PTE utilizes 
ANN algorithm then constructs the pattern of ambiguous relationships between the 
processing times and the influencing factors, which are derived from the product designs, and 
working environment. This pattern will be used for estimating the processing times of new 
designed products of new project. The new estimated times produced by PTE are stored in 
CDB. PTE provides important inputs for the AIP since the durations of the tasks for the flow-
shop scheduling are the important parameters that indicate the reliability of the schedule. 

Production planner (PP) 
PP has two responsibilities to do for the AIP. It assigns the starting time and the finishing 
time of manufacturing processes of the products. Also, it arranges the manufacturing 
sequence for the products. Thus, PP provides the decision of ‘when’ is the suitable time to 
produce a particular product. PP consists of two functions: workload analysis and schedule 
optimization. The workload analysis is conducted by combining three important information 
types i.e. the current workload, the new workload, and the constraint of resource capacity of 
the companies. The current workload is the previous production plan that can be retrieved 
from CDB. The new workload is the requirement of production resources for manufacturing 
the ordered products. From the factory’s limited resources, it is necessary that the maximum 
capacity of the manufacturing be evaluated. The analysis will show the availability of the 
resources for the new workload. Therefore, PP can generate all possible alternatives of the 
production schedule. To function the schedule optimization, PP applies GA to the flow-shop 
scheduling model. PP searches through possible schedules and selects the optimal or near 
optimal one out of them. Finally, PP gives the result with the production schedule. 

CONCLUSION 
This paper has presented the precast concrete production process particularly focusing on 
product design and production planning, and the problem of long customer lead-time. Lean 
construction concepts have been used for comprehending the problem and guiding the 
methodology to solve it. In order to ease the effort for production planning and to improve 
the planning process to give a better production schedule, the paper has proposed an 
automatic planning system called the artificial intelligence planner (AIP). The related 
available AI and flow-shop scheduling techniques that help develop the AIP have been 
reviewed. They are flow-shop scheduling with GA, and estimation and classification with 
ANN. However, in order to tackle the specific problem of precast industry, these techniques 
have to be specifically modified and applied. The paper has outlined the specifications, 
requirements and functionalities of the AIP with its components. The AIP consists of four 
components namely central database (CDB), graphic data extractor (GDE), processing time 
estimator (PTE), and production planner (PP). All components perform different tasks but 
automatically interact with each other to fulfill the functionality of the AIP. The AIP is 
anticipated to help decrease customer lead-time for bespoke precast concrete production. 
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